• 제목/요약/키워드: Prime rings

검색결과 272건 처리시간 0.017초

COMMUTATORS AND ANTI-COMMUTATORS HAVING AUTOMORPHISMS ON LIE IDEALS IN PRIME RINGS

  • Raza, Mohd Arif;Alhazmi, Hussain
    • Korean Journal of Mathematics
    • /
    • 제28권3호
    • /
    • pp.603-611
    • /
    • 2020
  • In this manuscript, we discuss the relationship between prime rings and automorphisms satisfying differential identities involving commutators and anti-commutators on Lie ideals. In addition, we provide an example which shows that we cannot expect the same conclusion in case of semiprime rings.

MODULES WHOSE CLASSICAL PRIME SUBMODULES ARE INTERSECTIONS OF MAXIMAL SUBMODULES

  • Arabi-Kakavand, Marzieh;Behboodi, Mahmood
    • 대한수학회보
    • /
    • 제51권1호
    • /
    • pp.253-266
    • /
    • 2014
  • Commutative rings in which every prime ideal is an intersection of maximal ideals are called Hilbert (or Jacobson) rings. We propose to define classical Hilbert modules by the property that classical prime submodules are intersections of maximal submodules. It is shown that all co-semisimple modules as well as all Artinian modules are classical Hilbert modules. Also, every module over a zero-dimensional ring is classical Hilbert. Results illustrating connections amongst the notions of classical Hilbert module and Hilbert ring are also provided. Rings R over which all modules are classical Hilbert are characterized. Furthermore, we determine the Noetherian rings R for which all finitely generated R-modules are classical Hilbert.

On Commutativity of σ-Prime Γ-Rings

  • DEY, KALYAN KUMAR;PAUL, AKHIL CHANDRA;DAVVAZ, BIJAN
    • Kyungpook Mathematical Journal
    • /
    • 제55권4호
    • /
    • pp.827-835
    • /
    • 2015
  • Let U be a ${\sigma}$-square closed Lie ideal of a 2-torsion free ${\sigma}$-prime ${\Gamma}$-ring M. Let $d{\neq}1$ be an automorphism of M such that $[u,d(u)]_{\alpha}{\in}Z(M)$ on U, $d{\sigma}={\sigma}d$ on U, and there exists $u_0$ in $Sa_{\sigma}(M)$ with $M{\Gamma}u_0{\subseteq}U$. Then, $U{\subseteq}Z(M)$. By applying this result, we generalize the results of Oukhtite and Salhi respect to ${\Gamma}$-rings. Finally, for a non-zero derivation of a 2-torsion free ${\sigma}$-prime $\Gamma$-ring, we obtain suitable conditions under which the $\Gamma$-ring must be commutative.

GRADED PSEUDO-VALUATION RINGS

  • Fatima-Zahra Guissi;Hwankoo Kim;Najib Mahdou
    • 대한수학회지
    • /
    • 제61권5호
    • /
    • pp.953-973
    • /
    • 2024
  • Let R = ⊕α∈Γ Rα be a commutative ring graded by an arbitrary torsionless monoid Γ. A homogeneous prime ideal P of R is said to be strongly homogeneous prime if aP and bR are comparable for any homogeneous elements a, b of R. We will say that R is a graded pseudo-valuation ring (gr-PVR for short) if every homogeneous prime ideal of R is strongly homogeneous prime. In this paper, we introduce and study the graded version of the pseudo-valuation rings which is a generalization of the gr-pseudo-valuation domains in the context of arbitrary Γ-graded rings (with zero-divisors). We then study the possible transfer of this property to the graded trivial ring extension and the graded amalgamation. Our goal is to provide examples of new classes of Γ-graded rings that satisfy the above mentioned property.

ARMENDARIZ PROPERTY OVER PRIME RADICALS

  • Han, Juncheol;Kim, Hong Kee;Lee, Yang
    • 대한수학회지
    • /
    • 제50권5호
    • /
    • pp.973-989
    • /
    • 2013
  • We observe from known results that the set of nilpotent elements in Armendariz rings has an important role. The upper nilradical coincides with the prime radical in Armendariz rings. So it can be shown that the factor ring of an Armendariz ring over its prime radical is also Armendariz, with the help of Antoine's results for nil-Armendariz rings. We study the structure of rings with such property in Armendariz rings and introduce APR as a generalization. It is shown that APR is placed between Armendariz and nil-Armendariz. It is shown that an APR ring which is not Armendariz, can always be constructed from any Armendariz ring. It is also proved that a ring R is APR if and only if so is R[$x$], and that N(R[$x$]) = N(R)[$x$] when R is APR, where R[$x$] is the polynomial ring with an indeterminate $x$ over R and N(-) denotes the set of all nilpotent elements. Several kinds of APR rings are found or constructed in the precess related to ordinary ring constructions.