DOI QR코드

DOI QR Code

ARMENDARIZ PROPERTY OVER PRIME RADICALS

  • Han, Juncheol (Department of Mathematics Education Pusan National University) ;
  • Kim, Hong Kee (Department of Mathematics and RINS Gyeongsang National University) ;
  • Lee, Yang (Department of Mathematics Education Pusan National University)
  • Received : 2012.07.10
  • Published : 2013.09.01

Abstract

We observe from known results that the set of nilpotent elements in Armendariz rings has an important role. The upper nilradical coincides with the prime radical in Armendariz rings. So it can be shown that the factor ring of an Armendariz ring over its prime radical is also Armendariz, with the help of Antoine's results for nil-Armendariz rings. We study the structure of rings with such property in Armendariz rings and introduce APR as a generalization. It is shown that APR is placed between Armendariz and nil-Armendariz. It is shown that an APR ring which is not Armendariz, can always be constructed from any Armendariz ring. It is also proved that a ring R is APR if and only if so is R[$x$], and that N(R[$x$]) = N(R)[$x$] when R is APR, where R[$x$] is the polynomial ring with an indeterminate $x$ over R and N(-) denotes the set of all nilpotent elements. Several kinds of APR rings are found or constructed in the precess related to ordinary ring constructions.

Keywords

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272. https://doi.org/10.1080/00927879808826274
  2. R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra 319 (2008), no. 8, 3128-3140. https://doi.org/10.1016/j.jalgebra.2008.01.019
  3. R. Antoine, Examples of Armendariz rings, Comm. Algebra 38 (2010), no. 11, 4130-4143. https://doi.org/10.1080/00927870903337968
  4. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473. https://doi.org/10.1017/S1446788700029190
  5. E. P. Armendariz, H. K. Koo, and J. K. Park, Isomorphic Ore extensions, Comm. Algebra 15 (1987), no. 12, 2633-2652. https://doi.org/10.1080/00927878708823556
  6. G. M. Bergman, Coproducts and some universal ring constructions, Trans. Amer. Math. Soc. 200 (1974), 33-88. https://doi.org/10.1090/S0002-9947-1974-0357503-7
  7. G. M. Bergman, Modules over coproducts of rings, Trans. Amer. Math. Soc. 200 (1974), 1-32. https://doi.org/10.1090/S0002-9947-1974-0357502-5
  8. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and associated radicals, Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993.
  9. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), no. 3, 213-230. https://doi.org/10.1016/S0022-4049(96)00011-4
  10. Y. U. Cho, N. K. Kim, M. H. Kwon, and Y. Lee, Classical quotient rings and ordinary extensions of 2-primal rings, Algebra Colloq. 13 (2006), no. 3, 513-523. https://doi.org/10.1142/S1005386706000460
  11. J. L. Dorroh, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), no. 2, 85-88. https://doi.org/10.1090/S0002-9904-1932-05333-2
  12. K. E. Eldridge, Orders for finite noncommutative rings with unity, Amer. Math. Monthly 73 (1966), 512-514.
  13. K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
  14. K. R. Goodearl and R. B. Warfield, Jr., An Introduction to Noncommutative Noetherian Rings, Cambridge University Press, 1989.
  15. C. Huh, H. K. Kim, and Y. Lee, Questions on 2-primal rings, Comm. Algebra 26 (1998), no. 2, 595-600. https://doi.org/10.1080/00927879808826150
  16. C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167 (2002), no. 1, 37-52. https://doi.org/10.1016/S0022-4049(01)00149-9
  17. C. Huh, H. K. Kim, D. S. Lee, and Y. Lee, Prime radicals of formal power series rings, Bull. Korean Math. Soc. 38 (2001), no. 4, 623-633.
  18. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761. https://doi.org/10.1081/AGB-120013179
  19. S. U. Hwang, Y. C. Jeon, and Y. Lee, Structure and topological conditions of NI rings, J. Algebra 302 (2006), no. 1, 186-199. https://doi.org/10.1016/j.jalgebra.2006.02.032
  20. S. U. Hwang, Y. Lee, and K. S. Park, On strongly 2-primal rings, Honam Mathematical J. 29 (2007), no. 4, 555-567. https://doi.org/10.5831/HMJ.2007.29.4.555
  21. Y. C. Jeon, H. K. Kim, Y. Lee, and J. S. Yoon, On weak Armendariz rings, Bull. Korean Math. Soc. 46 (2009), no. 1, 135-146. https://doi.org/10.4134/BKMS.2009.46.1.135
  22. D. W. Jung, N. K. Kim, Y. Lee, and S. P. Yang, Nil-Armendariz rings and upper nilradicals, Int. J. Alg. Comp. (to appear).
  23. N. K. Kim, K. H. Lee, and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Algebra 34 (2006), no. 6, 2205-2218. https://doi.org/10.1080/00927870600549782
  24. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488. https://doi.org/10.1006/jabr.1999.8017
  25. N. K. Kim, Y. Lee, and S. J. Ryu, An ascending chain condition on Wedderburn radicals, Comm. Algebra 34 (2006), no. 1, 37-50. https://doi.org/10.1080/00927870500345901
  26. T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991.
  27. J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham, 1966.
  28. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123. https://doi.org/10.1081/AGB-100002173
  29. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17. https://doi.org/10.3792/pjaa.73.14

Cited by

  1. Nilradicals of the unique product monoid rings vol.16, pp.07, 2017, https://doi.org/10.1142/S021949881750133X
  2. ABELIAN PROPERTY CONCERNING FACTORIZATION MODULO RADICALS vol.24, pp.4, 2016, https://doi.org/10.11568/kjm.2016.24.4.737
  3. ON JACOBSON AND NIL RADICALS RELATED TO POLYNOMIAL RINGS vol.53, pp.2, 2016, https://doi.org/10.4134/JKMS.2016.53.2.415