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COMMUTATIVITY OF JORDAN IDEALS IN 3-PRIME

NEAR-RINGS WITH DERIVATIONS

Abdelkarim Boua

Abstract. We prove some theorems showing that a right Jordan ideal or

a left Jordan ideal of a 3-prime near-ring must be commutative if it admits
a nonzero derivation acting as a homomorphism or an antihomomorphism.

Moreover, we give examples proving necessity of the conditions given.

1. Introduction

Throughout this paper N will be a zero-symmetric right near-ring with
multiplicative center Z(N ); and usually N will be 3-prime, that is, for all
x, y ∈ N , xN y = {0} implies x = 0 or y = 0. A near-ring N is called
zero-symmetric if x0 = 0 for all x ∈ N (recall that right distributivity yields
0x = 0). According to the reference [7], an abelian near-ring N is a near-ring
such that (N ,+) is abelian. An additive mapping d : N → N is a derivation
if d(xy) = xd(y) + d(x)y for all x, y ∈ N , or equivalently, as noted in [8], that
d(xy) = d(x)y + xd(y) for all x, y ∈ N . For any pair of elements x, y ∈ N ,
[x, y] = xy−yx and x◦y = xy+yx will denote the well-known Lie product and
Jordan product respectively. Recall that N is called 2-torsion free if 2x = 0
implies x = 0 for all x ∈ N . An additive subgroup J of N is said to be Jordan
left (resp. right) ideal of N if n◦j ∈ J (resp. j◦n ∈ J ) for all j ∈ J , n ∈ N and
J is said to be a Jordan ideal ofN if j◦n ∈ J and n◦j ∈ J for all j ∈ J , n ∈ N .
A derivation d acts as a homomorphism (resp. as an anti-homomorphism) on
a subset S of N if d(xy) = d(x)d(y) (resp. d(xy) = d(y)d(x)) for all x, y ∈ S.
Recently many author have studied commutativity of prime and semiprime
rings admitting suitably constrained additive mappings, as automorphisms,
derivations, skew derivations and generalized derivations acting on appropriate
subsets of the ring. In [3], Bell and Kappe proved that if d is a derivation of a
semiprime ring R which is either an endomorphism or an anti-endomorphism
on R, then d = 0; whereas, the behavior of d is somewhat restricted in case
of prime rings in the way that if d is a derivation of a prime ring R acting
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as a homomorphism or an anti-homomorphism on a nonzero right ideal of
R, then d = 0 on R. Afterwards Yenigul and Argac [9] generalized these
results with α-derivations and M. Ashraf, Rehman and Quadri [1] obtained
the similar results with (σ, τ)-derivations. Recently A. Ali, N. Rehman and
A. Shakir in [2] considered a (θ, φ)-derivation d acting as a homomorphism or
an anti-homomorphism on a nonzero Lie ideal of a prime ring and concluded
that d = 0. By the same motivation, we continue the line of investigation
regarding the study of commutativity for Jordan right ideals or Jordan left
ideals satisfying certain differential identities involving derivations acting as a
homomorphism or as an anti-homomorphism. More precisely, we will extend
the above-mentioned results for near-rings and obtain similar conclusion in
case of the underlying subsets as a Jordan right ideal or a Jordan left ideal of
a 3-prime near-ring N .

2. Some preliminaries

We begin with the following known results which will be used extensively to
prove our theorems.

Lemma 1. Let N be a 3-prime near-ring and J a nonzero Jordan right ideal
or a nonzero Jordan left ideal of N . If x ∈ N and J x = {0}, then x = 0.

Proof. Suppose that x ∈ N and jx = 0 for all j ∈ J . Replacing j by j ◦ n
where n ∈ N , we have jnx + njx = 0 for all j ∈ J , n ∈ N . Using the initial
hypothesis, we get jnx = 0 for all j ∈ J , n ∈ N , this reduces to jNx = {0}
for all j ∈ J . Since J 6= {0}, by 3-primeness of N we conclude that x = 0. �

Lemma 2. Let N be a 2-torsion free 3-prime near-ring and J a nonzero
Jordan right ideal or a nonzero Jordan left ideal of N . If N admits a derivation
d such that d(J ) ⊆ Z(N ), then d = 0 or J is commutative.

Proof. A proof can be given by using a similar approach as in the proof of
[5, Theorem 3.1]. �

Lemma 3 ([4, Lemma 3]). Let N be a 3-prime near-ring.

(i) If N is 2-torsion free and d a nonzero derivation on N , then d2 6= 0.
(ii) If d is a derivation, then x ∈ Z(N ) implies d(x) ∈ Z(N ).

Lemma 4 ([6, Lemma 2.1]). A near-ring N admits a multiplicative derivation
if and only if it is zero-symmetric.

Using Lemma 4, we deduce that in all our results in the present paper that
N is a zero-symmetric near-ring.

Lemma 5. Let N be a near-ring and d a derivation of N . Then N satisfies
the following partial distributive law

z

(
xd(y) + d(x)y

)
= zxd(y) + zd(x)y for all x, y, z ∈ N .
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3. Derivations as homomorphisms and anti-homomorphisms

Motivated by the results in [1], [2], [3], and [9], our objective in the present
paper is to establish similar results in the setting of Jordan right ideals or Jor-
dan left ideals on 3-prime near-rings admitting a nonzero derivation d satisfies
the conditions: d(ij) = d(i)d(j), d(nj) = d(j)d(n) and d(jn) = d(n)d(j) for all
i, j ∈ J , n ∈ N .

Theorem 1. Let N be a 2-torsion free 3-prime near-ring such that (N ,+) is
a torsion group and J a nonzero Jordan right ideal or a nonzero Jordan left
ideal of N . If d acts a homomorphism on J , then J is commutative.

Proof. (i) Suppose that J is a nonzero right Jordan ideal of N and

(1) d(ij) = d(i)d(j) for all i, j ∈ J .
By definition of d, (1) implies that

(2) d(i)j =
(
d(i)− i

)
d(j) for all i, j ∈ J

and

(3) id(j) = d(i)d(j)− d(i)j for all i, j ∈ J .
Replacing i by 2i2 in (1), we see that

d(2i2j) = d(2i2)d(j)

= 2d(i2)d(j) for all i, j ∈ J .

Since d(2i2j) = 2d(i2j) for all i, j ∈ J , according to the last expression after
using the fact that (N ,+) is a torsion group, we can conclude that

(4) d(i2j) = d(i2)d(j) for all i, j ∈ J .
By application of equations (1) and (4), we have

d(i)ij + id(i)d(j) = d(i)ij + id(ij)

= d(i2j)

= d(i2)d(j)

=
(
d(i)i+ id(i)

)
d(j)

= d(i)id(j) + id(i)d(j) for all i, j ∈ J .
This reduces to

(5) d(i)ij = d(i)id(j) for all i, j ∈ J .
Putting j2 instead of j in (5) and using it together with Lemma 5, we obtain

d(i)ij2 = d(i)id(j2)

= d(i)i
(
d(j)j + jd(j)

)
= d(i)id(j)j + d(i)ijd(j)

= d(i)ij2 + d(i)ijd(j) for all i, j ∈ J .
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Which implies that

(6) d(i)ijd(j) = 0 for all i, j ∈ J .

Replacing j by j ◦ nj where n ∈ N in (5) and applying it with Lemma 5, we
find that

d(i)i(j ◦ nj) = d(i)id(j ◦ nj)
= d(i)id((j ◦ n)j)

= d(i)i
(
d(j ◦ n)j + (j ◦ n)d(j)

)
= d(i)id(j ◦ n)j + d(i)i(j ◦ n)d(j)

= d(i)i(j ◦ n)j + d(i)i(j ◦ n)d(j)

= d(i)i(j ◦ nj) + d(i)i(j ◦ n)d(j) for all i, j ∈ J , n ∈ N .

This expression gives

d(i)i(j ◦ n)d(j) = 0 for all i, j ∈ J , n ∈ N .

Which can be rewritten as

(7) d(i)i(jnd(j) + njd(j)) = 0 for all i, j ∈ J , n ∈ N .

Replacing n by nd(i)i in (7) and invoking (6), we arrive at

d(i)ijnd(i)id(j) = 0 for all i, j ∈ J , n ∈ N .

Equivalently,

(8) d(i)ijNd(i)id(j) = {0} for all i, j ∈ J .

By 3-primeness of N , (8) becomes

(9) d(i)ij = d(i)id(j) = 0 for all i, j ∈ J .

Returning to (2) and replacing j by j ◦ nj, we have

d(i)(j ◦ nj) = (d(i)− i)d(j ◦ nj)
= (d(i)− i)d((j ◦ n)j)

= (d(i)− i)d(j ◦ n)j + (d(i)− i)(j ◦ n)d(j)

= d(i)(j ◦ n)j + (d(i)− i)(j ◦ n)d(j)

= d(i)(j ◦ jn) + (d(i)− i)(j ◦ n)d(j) for all i, j ∈ J , n ∈ N

which implies that

(d(i)− i)(j ◦ n)d(j) = 0 for all i, j ∈ J , n ∈ N .

Equivalently,

(10) (d(i)− i)(jnd(j) + njd(j)) = 0 for all i, j ∈ J , n ∈ N .

Replacing n by nd(j) in (10) and invoking (8), we arrive at

(11) (d(i)− i)jNd(j)d(j) = {0} for all i, j ∈ J .
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Hence by 3-primeness of N , we see that for each pair i, j ∈ J we get, either
(d(i)− i)j = 0 or d(j)d(j) = 0. Using (1), we have

(12) (d(i)− i)j = 0 or d(j2) = 0 for all i, j ∈ J .
If there exists j0 ∈ J such that (d(i)− i)j0 = 0, then ij0 = d(i)j0 for all i ∈ J ,
replacing i by i ◦ ni, then

(i ◦ ni)j0 = d(i ◦ ni)j0
= d((i ◦ n)i)j0

= d(i ◦ n)ij0 + (i ◦ n)d(i)j0

= d(i ◦ n)ij0 + (i ◦ n)ij0

= d(i ◦ n)ij0 + (i ◦ ni)j0 for all i ∈ J , n ∈ N

this implies that d(i ◦ n)ij0 = 0 for all i ∈ J , n ∈ N and using (2), we get

(d(i ◦ n)− (i ◦ n))d(i)j0 = 0 for all i ∈ J , n ∈ N .
By assumption, we have (d(i ◦ n)− (i ◦ n))ij0 = 0 for all i ∈ J , n ∈ N so that
(i ◦ n)ij0 = 0 for all i ∈ J , n ∈ N which gives

(13) inij0 = −ni2j0 for all i ∈ J , n ∈ N .
Replacing n by mn in (13) and using it again, we have

imnij0 = −mni2j0
= (−m)(−inij0)

= (−m)(−i)nij0 for all i ∈ J , m, n ∈ N

this implies that

(im− (−m)(−i))N ij0 = {0} for all i ∈ J , m ∈ N .
Putting −i instead of i in the latter expression, we obtain

(14) (−im+mi)N ij0 = {0} for all i ∈ J , m ∈ N .
Using 3-primeness of N , (14) can be written in the form

(15) i ∈ Z(N ) or ij0 = 0 for all i ∈ J .
If there exists i0 ∈ J ∩ Z(N ), then (13) implies that 2ni20j0 = 0 for all n ∈ N .
By the 2-torsion freeness and the 3-primeness of N , we arrive at i20j0 = 0.
Recalling (15), we get i2j0 = 0 for all i ∈ J and from it and (13) it follows that
iN ij0 = {0} for all i ∈ J . Since N is 3-prime and J 6= {0}, then ij0 = 0 for all
i ∈ J . Replacing i by i◦n where n ∈ N , we get iN j0 = {0} for all i ∈ J . Since
N is 3-prime and J 6= {0}, then j0 = 0. In which case equation (12) forces
that d(j2) = 0 for all j ∈ J . Using the latter expression after replacing i by
2i2 in (3), we obtain 2i2d(j) = 0 for all i, j ∈ J which implies that i2d(j) = 0
for all i, j ∈ J . Putting j ◦ nj2 where n ∈ N , in place of j, we have

0 = i2d(j ◦ nj2)
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= i2(jnj + nj2)d(j)

= i2
(
jnjd(j) + nj2d(j)

)
= i2jnjd(j) for all i, j ∈ J , n ∈ N

which reduces to
i2jN jd(j) = {0} for all i, j ∈ J .

By 3-primeness of N , we arrive at

(16) i2j = 0 or jd(j) = 0 for all i, j ∈ J .
If there is j0 ∈ J such that j0d(j0) = 0, then according to (10) we get

(d(i)− i)j0Nd(j0) = {0} for all i ∈ J .
3-primeness of N gives (d(i) − i)j0 = 0 or d(j0) = 0 for all i ∈ J from the
above, in all cases we can easily find that d(j0) = 0. Then (16) becomes

i2j = 0 or d(j) = 0 for all i, j ∈ J .
Suppose that there is j0 ∈ J such that i2j0 = 0 for all i ∈ J , then using the
same techniques as we have used previously, we arrive at j0 = 0. Therefore, in
all cases, we obtain d(J ) = {0} and Lemma 2 forces that J is commutative.

(ii) For a nonzero Jordan left ideal J of N , using the same previous demon-
stration with minor changes, we can easily find the required result. �

Theorem 2. Let N be a 2-torsion free 3-prime near-ring and J a nonzero
Jordan right ideal or a nonzero Jordan left ideal of N . If N admits a nonzero
derivation d satisfying any one of the following conditions:

(i) d(nj) = d(j)d(n) for all j ∈ J , n ∈ N ,
(ii) d(jn) = d(n)d(j) for all j ∈ J , n ∈ N ,

then J is commutative.

Proof. (i) By our hypothesis, we have

(17) d(nj) = d(j)d(n) for all j ∈ J , n ∈ N .
Replacing n by nj in (17) and using the definition of d, (17) becomes

(18) d(nj)j + njd(j) = d(j)d(nj) for all j ∈ J , n ∈ N .
Using (18) and definition of d, it follows by straightforward computation that

(19) njd(j) = d(j)nd(j) for all j ∈ J , n ∈ N .
Taking mn instead of n in (19) and using it again, we can easily arrive at
[d(j),m]Nd(j) = {0} for all j ∈ J , m ∈ N . By 3-primeness of N , we conclude
that d(J ) ⊆ Z(N ) and application of Lemma 2 yields the required result.

(ii) Assume that

(20) d(jn) = d(n)d(j) for all j ∈ J , n ∈ N .
Replacing n by nm in (20) and using the definition of d, we get

(21) d(j)nm+ jd(n)m+ jnd(m) = d(nm)d(j) for all j ∈ J , m, n ∈ N .
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By Lemma 5, (21) implies that

(22) (d(j)n+ jd(n))m+ jnd(m) = d(nm)d(j) for all j ∈ J , m, n ∈ N .

In view of (20), (22) becomes

d(n)d(j)m+ jnd(m) = d(nm)d(j) for all j ∈ J , m, n ∈ N

which reduces to

jnd(m) = −d(n)d(j)m+ d(n)md(j) + nd(m)d(j) for all j ∈ J , m, n ∈ N .

Putting d(j) in place of m, we obtain

(23) jnd2(j) = nd2(j)d(j) for all j ∈ J , n ∈ N .

Substituting nm instead of n in (23), from the above, it is easy to see that
[j, n]Nd2(j) = {0} for all j ∈ J , n ∈ N . By 3-primeness of N , we arrive at

(24) j ∈ Z(N ) or d2(j) = 0 for all j ∈ J .

If there is j0 ∈ Z(N ) ∩ J , then (20) yields d(nj0) = d(n)d(j0) for all n ∈ N
which gives

(25) nd(j0) = (d(j0)− j0)d(n) for all n ∈ N .

Taking mn instead of n in (25) and using it again, we can easily write

(d(j0)− j0)Nd(n) = {0} for all n ∈ N .

Since d 6= 0, then from the 3-primeness of N it follows that d(j0) = j0.
Returning to (25), we can conclude that nd(j0) = 0 for all n ∈ N so that
nNd(j0) = {0} for all n ∈ N . In view of 3-primeness of N , we get d(j0) = 0, in
which case equation (23) implies d2(j) = 0 for all j ∈ J . Replacing n by d(i)
in (20) where i ∈ J , we arrive at d(j)d(i) = 0 for all i, j ∈ J which implies
that

(26) d(ij) = d(i)j + id(j) = 0 for all i, j ∈ J .

Replacing i by 2i2 in (26), we find that 2i2d(j) = 0 for all i, j ∈ J so that
i2d(j) = 0 for all i, j ∈ J . Now, putting i◦ni instead of i where n ∈ N in (26),
we obtain (i ◦ ni)d(j) = 0 for all i, j ∈ J , n ∈ N which becomes inid(j) = 0
for all i, j ∈ J , n ∈ N and 3-primeness of N forces that id(j) = 0 for all
i, j ∈ J . In this case, taking i ◦ ni instead of i in (26) where n ∈ N , we arrive
at ind(j) = 0 for all i, j ∈ J , n ∈ N . By 3-primeness of N , we arrive at
d(J ) = {0}, another appeal to Lemma 2 we conclude that J is commutative.

For a nonzero Jordan left ideal J of N , using the same previous demonstra-
tions with necessary changes, we can easily find the required result. �

The following example demonstrates that the 3-primeness of N in Theorem
2 is crucial.
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Example 1. Let S be a 2-torsion free near-ring which is not abelian. Define

N ,J , d by N =

{(
0 x y
0 0 0
0 z 0

)
| x, y, z ∈ S

}
, J =

{(
0 m 0
0 0 0
0 0 0

)
| m ∈ S

}
and

d
(

0 x y
0 0 0
0 z 0

)
=
(

0 x y
0 0 0
0 0 0

)
. Then it can be easily seen that N is a left near-ring

which is not 3-prime, J is a nonzero Jordan ideal of N and d is a derivation
on N such that

(i) d(AC) = d(C)d(A),
(ii) d(CB) = d(B)d(C)

for all A,B ∈ J , C ∈ N . However, J is not commutative.
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