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ON RINGS IN WHICH EVERY IDEAL IS WEAKLY PRIME

Yasuyuki Hirano, Edward Poon, and Hisaya Tsutsui

Abstract. Anderson-Smith [1] studied weakly prime ideals for a com-
mutative ring with identity. Blair-Tsutsui [2] studied the structure of a
ring in which every ideal is prime. In this paper we investigate the struc-
ture of rings, not necessarily commutative, in which all ideals are weakly
prime.

Introduction

Anderson-Smith [1] defined a proper ideal P of a commutative ring R with
identity to be weakly prime if 0 6= ab ∈ P implies a ∈ P or b ∈ P, and then
it is proved that every proper ideal in a commutative ring R with identity is
weakly prime if and only if either R is a quasilocal ring (possibly a field) whose
maximal ideal is square zero, or R is a direct sum of two fields [1, Theorem 8].
On the other hand, Blair-Tsutsui [2] studied the structure of a ring in which
every ideal is prime. In this paper we first consider the structure of rings, not
necessarily commutative nor with identity, in which all ideals are weakly prime.
A necessary and sufficient condition for a ring to have such property is given
and several examples to support given propositions are constructed. We then
further investigate commutative rings in which every ideal is weakly prime and
the structure of such rings under assumptions that generalize commutativity
of rings. At the end, we consider the structure of rings in which every right
ideal is weakly prime.

Definitions and general results

Throughout this paper, all rings are associative. By a ring R with identity,
we shall mean that R has a multiplicative identity 1 6= 0.

By Theorem 3 of Anderson-Smith [1], the following statements are equivalent
for an ideal P of a commutative ring R with identity:

(a) P is weakly prime.
(b) For ideals A and B of R, 0 6= AB ⊆ P implies A ⊆ P or B ⊆ P.
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For rings that are not necessarily commutative, it is clear that (b) does not
imply (a). The standard definition of a prime ideal P for a noncommutative
ring R is that for ideals A and B of R, AB ⊆ P implies A ⊆ P or B ⊆ P.
Accordingly, we define an ideal of a ring R to be weakly prime as follows.

Definition. We define a proper ideal I of a ring R to be weakly prime if
0 6= JK ⊆ I implies either J ⊆ I or K ⊆ I for any ideals J, K of R.

Our first proposition is Theorem 1 of Anderson-Smith [1] in a more general
setting.

Proposition 1. If P is weakly prime but not prime, then P 2 = 0.

Proof. Since P is weakly prime but not prime, there exist ideals I 6⊆ P and
J 6⊆ P but 0 = IJ ⊆ P. But if P 2 6= 0, then 0 6= P 2 ⊆ (I + P )(J + P ) ⊆ P ,
which implies I ⊆ P or J ⊆ P , a contradiction. Hence, P 2 = 0. �

Proposition 2. Let P be an ideal in a ring R with identity. The following
statements are equivalent:

(1) P is a weakly prime ideal.
(2) If J , K are right (left) ideals of R such that 0 6= JK ⊆ P, then J ⊆ P

or K ⊆ P.
(3) If a, b ∈ R such that 0 6= aRb ⊆ P, then a ∈ P or b ∈ P.

Proof. The implications (1)⇒(2) and (2)⇒(3) are easy, but we include their
proofs for completeness.

(1)⇒(2): Assume (1) holds. Suppose J , K are right (left) ideals of R such
that 0 6= JK ⊆ P. Let (J), (K) be the ideals generated by J , K respectively.
Then 0 6= (J)(K) ⊆ P, whence J ⊆ (J) ⊆ P or J ⊆ (J) ⊆ P.

(2)⇒(3): Assume (2) holds. Suppose 0 6= aRb ⊆ P. Since R has an identity,
0 6= (aR)(bR) ⊆ P, whence a ∈ aR ⊆ P or b ∈ bR ⊆ P.

(3)⇒(1): Assume (3) holds. Suppose that JK ⊆ P for ideals J and K of R,
where K 6⊂ P and J 6⊂ P . Let x ∈ J\P , y ∈ K\P , x′ ∈ J ∩P , and y′ ∈ K ∩P
be arbitrary. Since x + x′, y + y′ /∈ P, we must have 0 = (x + x′)R(y + y′).
Considering all combinations where x′and/or y′equal zero shows that 0 = xy =
xy′ = x′y = x′y′, and hence JK = 0. �

We are interested in the structure of rings in which every ideal is weakly
prime. Note that by definition, a weakly prime ideal is a proper ideal of a ring.
It is therefore not possible that every ideal of a ring is a weakly prime ideal.
However, a ring whose zero ideal is prime is called a prime ring. In this sense,
every ring is a weakly prime ring since the zero ideal is always weakly prime.
We may therefore say that every ideal of a ring is weakly prime when every
proper ideal of the ring is a weakly prime ideal.

If R2 = 0, then it is evident that every ideal of R is weakly prime. In
particular, if an ideal I of a ring R is weakly prime but not a prime ideal, then
every ideal of I as a ring is weakly prime by Proposition 1.
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Proposition 3. Every ideal of a ring R is weakly prime if and only if for any
ideals I and J of R, IJ = I,IJ = J, or IJ = 0.

Proof. Suppose that every ideal of R is weakly prime. Let I, J be ideals of R.
If IJ 6= R, then IJ is weakly prime. If 0 6= IJ ⊆ IJ, then we have I ⊆ IJ or
J ⊆ IJ , that is, I = IJ or J = IJ. If IJ = R, then we have I = J = R whence
R2 = R.

Conversely, let K be any proper ideal of R and suppose that 0 6= IJ ⊆ K
for ideals I and J of R. Then we have either I = IJ ⊆ K or J = IJ ⊆ K. �

Corollary 1. Let R be a ring in which every ideal of R is weakly prime. Then
for any ideal I of R, either I2 = I or I2 = 0.

Example 1. Let F be a field and R = F ⊕ F ⊕ F . Then every ideal of R is
idempotent but the ideal I = F ⊕ 0⊕ 0 is evidently not weakly prime, showing
that the converse of Corollary 1 is false.

Suppose that a ring R with identity has a maximal ideal M and M2 = 0.
Thus, the product of any two ideals contained in M is zero. It is evident that
every proper ideal of R is contained in M , and for any ideal I, IR = RI = I.
Hence, every ideal of R is weakly prime. In this case, notice that M is the only
prime ideal of R.

Corollary 1 in particular yields that if a ring R has the property that every
ideal is weakly prime, then either R2 = R, or R2 = 0. Notice that R2 is neither
0 nor R in the example given below.

Example 2. Let S be a ring such that S2 = 0, and let F be a field. Then
the ring R = F ⊕ S ⊕ S with component-wise addition and multiplication has
a maximal ideal M = 0 ⊕ S ⊕ S and M2 = 0. However, I = F ⊕ 0 ⊕ S is not
weakly prime since 0 6= (F ⊕ S ⊕ 0)2 ⊆ I.

If a ring R satisfying R2 = R has a maximal ideal M and M2 = 0, then every
proper ideal of R is contained in M . However, it is possible that MR 6= M .
Thus, such a ring does not necessarily have the property that every ideal is
weakly prime as the following example shows.

Example 3. Let F be a field and S =
{[

0 a b
0 c d
0 0 0

]∣∣∣ a, b, c, d ∈ F
}

. Then S has a

unique maximal ideal L =
{[

0 a b
0 0 d
0 0 0

]∣∣∣ a, b, d ∈ F
}

. Let N =
{[

0 0 b
0 0 0
0 0 0

]∣∣∣ b ∈ F
}

.

Consider the factor ring R = S/N . While R2 = R and M = L/N is a maximal
ideal whose square is zero, the proper ideals RM and MR are not weakly
prime.

Proposition 4. If every ideal of a ring R is weakly prime and R2 = R, then
R has at most two maximal ideals.

Proof. Suppose that R has more than two distinct maximal ideals. Let M1,
M2, and M3 be three distinct maximal ideals. Then M1M2 6= 0. Thus we have
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0 6= M1M2 ⊆ M1 ∩ M2. But this implies either M1 ⊆ M2 or M2 ⊆ M1, a
contradiction. �

The following example shows that the condition R2 = R in Proposition 4
cannot be dropped.

Example 4. Let R be the unique maximal ideal of Z4. Then S = R⊕R⊕R
is an example of a ring all of whose ideals are weakly prime and having more
than 2 maximal ideals.

Proposition 5. Suppose that every ideal of a ring R is weakly prime. If R
has two maximal ideals, then their product is zero. Furthermore, if R has an
identity element, then R is a direct sum of two simple rings.

Proof. Suppose that R has two distinct maximal ideals M1 and M2. Then since
M1 ∩M2 is weakly prime and M1M2 ⊆ M1 ∩M2, we must have M1M2 = 0,
and similarly M2M1 = 0.

If R has an identity element, thenM1∩M2 = (M1∩M2)R = (M1∩M2)(M1+
M2) ⊆M2M1 +M1M2 = 0, and this implies that R ' R/M1 ⊕R/M2. �

Suppose that every ideal of a ring R is weakly prime. By Proposition 1 and
Corollary 1, any nontrivial idempotent ideal of R is a prime ideal. Recall that
the intersection of all prime ideals of a ring R is called the prime radical of R.
Hereafter, we denote the prime radical of R by P (R), and the sum of all ideals
whose square is zero by N(R).

Theorem 1. Suppose that every ideal of a ring R is weakly prime and R2 = R.
Then P (R) = N(R) and (P (R))2 = (N(R))2 = 0.

Proof. Take a1, a2 ∈ N(R). Then there are finitely many square-zero ideals
I1, I2, . . . , Im such that a1, a2 ∈ I1 + I2 + · · · + Im. Since I2

j = 0 for each j,
(I1 + I2 + · · ·+ Im)k = 0 for some k but then (I1 + I2 + · · ·+ Im)2 = 0 by
Corollary 1. Hence, (N(R))2 = 0. This implies that if P is any prime ideal
of R, N(R) ⊆ P and consequently, N(R) ⊆ P (R). We should note that R
contains at least one prime ideal. Indeed, if R contains a nonzero idempotent
ideal, then by the remark above, it must be prime. If every ideal is nilpotent,
then since R2 = R, N(R) 6= R is a prime ideal.

If P (R) is not a prime ideal, then (P (R))2 = 0. This implies that P (R) ⊆
N(R) by the definition of N(R), and hence the result follows.

Suppose P (R) is a prime ideal. In this case, we will show that N(R) must
also be prime. This implies that P (R) ⊆ N(R) by the definition of P (R), and
hence the result follows. To show that N(R) is also a prime ideal, note first
that since N(R) ⊆ P (R), every ideal containing P (R) is a non-nilpotent ideal
and thus they are all prime ideals. This implies that ideals of R/P (R) are
linearly ordered by Theorem 1.2 of Blair-Tsutsui [2] and therefore the prime
ideals of R are linearly ordered.
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Suppose now that IJ ⊆ N(R) for ideals I and J of R. Since N(R) is weakly
prime, we have J ⊆ N(R) or I ⊆ N(R) if IJ 6= 0. Suppose IJ = 0. If I2 = 0 or
J2 = 0, then J ⊆ N(R) or I ⊆ N(R). If both I and J are not square zero, then
they are prime ideals. But then either I = I2 ⊆ IJ = 0 or J = J2 ⊆ IJ = 0, a
contradiction. This shows that N(R) is a prime ideal. �
Corollary 2. Suppose that every ideal of a right Noetherian ring R with
identity is weakly prime and R2 = R. Then P (R) = N(R) = J(R) and
(J(R))2 = (P (R))2 = (N(R))2 = 0, where J(R) is the Jacobson radical of
R.

Proof. If (J(R))2 = J(R), then J(R) = 0 by Nakayama’s lemma. Since P (R) ⊆
J(R), the result follows. If (J(R))2 = 0, then J(R) ⊆ P for every prime ideal
P in R. Hence J(R) ⊆ P (R). �

Note that for a ring R in which every ideal is weakly prime, in general it is
possible that P (R) = N(R) 6= J(R), where J(R) is the Jacobson radical of R.
See §5 an example of Blair-Tsutsui [2].

Corollary 3. Suppose that every ideal of a ring R is weakly prime. Then every
nonzero ideal of R/N(R) is prime.

Corollary 4. Suppose that every ideal of a ring R is weakly prime. Then
(N(R))2 = 0 and every prime ideal contains N(R). There are three possibilities:

(a) N(R) = R.
(b) N(R) = P (R) is the smallest prime ideal and all other prime ideals are

idempotent and prime ideals are linearly ordered. If N(R) 6= 0, then it is the
only non-idempotent prime ideal.

(c) N(R) = P (R) is not a prime ideal. In this case, there exist two nonzero
minimal prime ideals J1 and J2 with N(R) = J1∩J2 and J1J2 = J2J1 = 0. All
other ideals containing N(R) also contain J1+J2 and they are linearly ordered.

Proof. If R2 = 0, then N(R) = R. So clearly (N(R))2 = 0, and there are no
prime ideals.

If R2 = R, then by Theorem 1, P (R) = N(R) and (P (R))2 = (N(R))2 = 0.
By the definition of P (R), every prime ideal contains N(R) = P (R).

If N(R) = P (R) is prime, it is evidently the smallest prime ideal and all
other prime ideals are idempotent. Further, in our proof of Theorem 1, we
observed that all prime ideals of R are linearly ordered.

IfN(R) = P (R) is not a prime ideal, then since every ideal of R/N(R) except
0 is prime, the ideals of R/N(R) are not linearly ordered by Theorem 1.2 of
Blair-Tsutsui [2]. Thus, by Theorem 2.1 of Tsutsui [4], there exist two nonzero
minimal prime ideals J1 and J2 with N(R) = J1 ∩ J2. Moreover, all other
ideals containing N(R) also contain J1+J2 and they are linearly ordered. Since
N(R) = J1 ∩ J2 is weakly prime, we must have J1J2 = J2J1 = 0. Otherwise,
J1J2, J2J1 ⊆ J1 ∩ J2 implies either J1 ⊆ J1 ∩ J2 ⊆ J2 or J2 ⊆ J1 ∩ J2 ⊆ J1,
giving a contradiction. �
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Example 5. Let R be a ring and M an R-bimodule. Define

R ∗M = {(r, m) | r ∈ R, m ∈M}
with component-wise addition and multiplication (r, m)(s, n) = (rs, rn+ms).
Then R ∗M is a ring whose ideals are precisely of the form I ∗N where I is an
ideal of R and N is a submodule (a bimodule) of M containing IM and MI.

(a) Let R be a prime ring that contains exactly one nonzero proper ideal P .
For example, the ring of linear transformations of a vector space V over a field
F where dimF V = ℵ0 has such a property. Then every ideal of S1 = R ∗ P is
weakly prime: the maximum ideal P1 = P ∗ P is idempotent and the nonzero
minimal ideal P2 = 0 ∗ P is nilpotent, both of which are prime.

(b) Every ideal of S2 = S1 ∗ P2 is weakly prime: The maximum ideal Q1 =
P1 ∗ P2 is idempotent and the three nonzero nilpotent ideals are Q2 = P2 ∗ P2,
Q3 = 0 ∗ P2, and Q4 = P2 ∗ 0.

(c) If we redefine the multiplication above as (r, m)(s, n) = (rs, rn+ms+
mn), then S1 in (a) has an additional minimal ideal P3 = {(p, −p)| p ∈ P}. In
this case, N(S1) = P3 ∩ P2 = 0.

We do not know of an example of the case (c) in Corollary 4 whereN(R) 6= 0.

Commutative rings and generalizations thereof

We now consider the structure of rings in which every ideal is weakly prime
under the assumption of the ring being commutative or with commutative-like
conditions.

Proposition 6. Let R be a commutative ring in which every ideal is weakly
prime. If R2 = R, then R has a maximal ideal.

Proof. If there exists a nonzero idempotent proper ideal I, then every ideal
containing I must be idempotent and hence prime. This implies that every
ideal of R/I is prime. By Theorem 1.3 of Blair-Tsutsui [2], this implies that I
is a maximal ideal of R. If all proper ideals are nilpotent, then since R2 = R,
N(R) 6= R is the maximal ideal. �

We note that a commutative ring R with the property R2 = R does not
necessarily have a maximal ideal. For example, if a commutative ring S has a
unique nonzero maximal ideal M and M2 = M, then M as a ring cannot have
a maximal ideal.

The following corollary is a direct consequence of Proposition 4 and Propo-
sition 6.

Corollary 5. Let R be a commutative ring all of whose ideals are weakly prime.
Suppose that R2 = R. Then R has either a unique maximal ideal or exactly
two maximal ideals.
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Theorem 2. Let R be a commutative ring all of whose ideals are weakly prime.
Suppose that R2 = R.

(1) If R has a unique maximal ideal M , then M2 = 0.
(2) If R has two maximal ideals M and N , then MN = 0.

Proof. (1) Suppose that R has a unique maximal ideal M and M2 = M 6= 0.
If N(R) is prime, then by Corollary 3, R/N(R) is a commutative ring R all of
whose ideals are prime. Hence R/N(R) is a field and we must have N(R) =
M , a contradiction to the assumption that M2 = M 6= 0. If N(R) is not a
prime ideal, then there exist two nonzero minimal prime ideals J1 and J2 with
N(R) = J1 ∩ J2 by Corollary 4. But then since R/J1 and R/J2 must both be
fields, we have N(R) = J1 ∩ J2 = M and this is also a contradiction.

(2) Suppose that R has two maximal ideals M and N such that MN 6= 0.
Then since MN is weakly prime, we have either N ⊆ MN ⊆ M or M ⊆
MN ⊆ N, a contradiction. �

Proposition 7. Let R be a commutative ring all of whose ideals are weakly
prime. Suppose that R2 = R. Then every proper ideal is contained in a maximal
ideal.

Proof. R has either a unique maximal ideal whose square is zero or exactly two
maximal ideals whose product is zero.

LetM be a maximal ideal. Suppose that L is a proper ideal of R and L 6⊂M.
Since R2 = R, M is a prime ideal and hence L2 6⊂M. This implies that L2 6= 0
and thus L is a prime ideal. Therefore, if M2 = 0, we get L = M.

If M2 = M, then there exists another maximal ideal N and MN = 0 ⊆ L.
This implies N = L. We now conclude that every ideal in R is contained in a
maximal ideal of R. �

Corollary 6. Let R be a commutative ring and suppose that every ideal of R
is weakly prime. If R2 = R, then R has an identity element.

Proof. We show that if a commutative ring R satisfies the following conditions,
then R has an identity element:

(a) R2 = R,
(b) every proper ideal is contained in a maximal ideal, and
(c) R has a finite number of maximal ideals M1,M2, . . . ,Mn.
Choose x ∈ R such that x /∈Mj for any J . Let (x) = {xR+ nx | n ∈ Z}. If

xR ⊆ Mj , then R = R2 = (Mj + (x))2 ⊆ Mj , a contradiction. Hence xR = R
and consequently, R has an identity element. �

Corollary 7. Let R be a commutative ring all of whose ideals are weakly prime.
Then one of the following holds:

(a) R2 = 0,
(b) R is a ring with identity and with a square zero maximal ideal M , or
(c) R is a direct sum of two fields.
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For the case (b) in Corollary 7, the following theorem further determines
the structure of R.

Theorem 3. Let R be a commutative ring with a square-zero maximal ideal
M and R2 = R. If (ch(R/M) = 0, then R is isomorphic to (R/M) ∗M (as
defined in Example 5).

Proof. Let x /∈ M and (x) = {xR + nx | n ∈ Z}. Then since M2 = 0, R =
R2 = (M + (x))2 ⊆ xR and this implies that R has an identity element. Thus,
in particular, any element not in M is invertible.

Let π : R → R/M be the canonical projection and write π(r) = r̄. We
identify n1 ∈ R with n ∈ Z; since ch(R/M) = 0, we have n ∈M if and only if
n̄ = 0̄ if and only if n = 0. In particular, any 0 6= n ∈ Z is invertible.

Note that if E is a subfield of R/M and ψ : E → R is a homomorphism
satisfying π ◦ ψ = id|E , then the map ϕ : E ∗M → R given by ϕ((x̄,m)) =
ψ(x̄) + m is a monomorphism. Thus, it suffices to show that such a map ψ
exists for E = R/M (in this case ϕ is also onto); we proceed in stages, defining
ψ on successively larger subfields E ⊆ R/M .

Step 1: Let K be the base field for R/M . Define ψ : K → R by ψ(āb̄−1) =
ab−1 for any a, 0 6= b ∈ Z. Then ψ is a homomorphism and clearly π◦ψ = id|K .

Step 2: Let π(T ) be a transcendence base for R/M over K and write F =
K(π(T )). Then any nonzero element in the subring generated by ψ(K) and T
is invertible. Let RT denote the field in R generated by ψ(K) and T . Define
ψ(t̄) = t for any t ∈ T . Then ψ extends to an isomorphism from F to RT and
π ◦ ψ|F = id|F .

Step 3: Let A ⊂ R/M be an algebraic set over F such that R/M = F (A).
Well-order A.

Write Fb̄ for F ({ā ∈ A|ā < b̄}) and F̃b̄ for F ({ā ∈ A|ā ≤ b̄}). We extend
ψ to R/M recursively. Suppose there exists an extension ψ : Fb̄ → R which
is a homomorphism satisfying π ◦ ψ|Fb̄

= id|Fb̄
. It suffices to extend ψ to a

homomorphism from F̃b̄ to R satisfying π ◦ ψ|F̃b̄
= id|F̃b̄

.

The case b̄ ∈ Fb̄ is trivial, so suppose b̄ /∈ Fb̄. Let p ∈ Fb̄[x] be the minimum
polynomial of b̄.

If p(x) =
∑n
k=1 c̄kx

k, define pψ(x) =
∑n
k=1 ψ(c̄k)xk. Fix u ∈ π−1(b̄). If

p′ψ(u) ∈ M, then p′(b) = π(p′ψ(u)) = 0̄, and this contradicts the minimality of
p. So p′ψ(u) is invertible.

Define m = −pψ(u)[p′ψ(u)]−1 ∈ M. Then pψ(u + m) = 0, so v = u + m

satisfies pψ(v) = 0.
Define ψ(b̄) = v, and more generally, ψ(

∑n
k=1 āk b̄

k) =
∑n
k=1 ψ(āk)vk for all

āk ∈ Fb̄. Then ψ extends to a homomorphism from F̃b̄ to R and π ◦ ψ|F̃b̄
=

id|F̃b̄
. �
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Using the same proof, the result also holds for ch(R/M) = p if pR = 0
and R/M is separable over F. In general, however, the theorem is false if
ch(R/M) = p 6= 0.

Example 6. (a) Let R = Zp2 where p is prime. Then R has maximal ideal
M = pR 6= 0 but p(R/M ∗M) = 0.

(b) Let R = [ F F
0 0 ] where F is a field. Then R2 = R 6= 0, and every ideal of

R is weakly prime but R does not contain an identity element.

As a natural generalization of commutative rings, we next consider polyno-
mial identity rings.

Theorem 4. Let R be a ring with identity that satisfies a polynomial identity.
If every ideal of R is weakly prime, then one of the following holds:

(a) R/P (R) is a finite dimensional central simple algebra.
(b) R is a direct sum of two finite dimensional central simple algebras.

Proof. If P (R) is a prime ideal, then every ideal ofR/P (R) is prime by Theorem
1 and Corollary 3 and hence (a) holds by Theorem 3.3 of Blair-Tsutsui [2].

If P (R) is not a prime ideal, then by Corollary 4 (c), there exist two nonzero
minimal prime ideals J1 and J2. Since every ideal of R/J1 is prime and since
R/J1 satisfies a polynomial identity, R/J1 is a finite dimensional central simple
algebra by Theorem 3.3 of Blair-Tsutsui [2]. By the same reason, R/J2 is a
finite dimensional central simple algebra. Since R has two maximal ideals J1

and J2, R ' R/J1 ⊕R/J2 by Proposition 5. �

More general than the class of PI-rings is the class of fully bounded rings.
Using Theorem 3.4 of Blair-Tsutsui [2], essentially the same proof as given
above yields the following theorem.

Theorem 5. Let R be a ring with identity in which every ideal is weakly prime.
If R is a right fully bounded, right Noetherian ring, then one of the following
holds:

(a) R/P (R) is a simple Artinian ring.
(b) R is a direct sum of two simple Artinian rings.

Rings in which every right ideal is weakly prime

Recall that a proper right ideal I of a ring R is called prime if JK ⊆ I
implies either J ⊆ I or K ⊆ I for any right ideals J, K of R.

Definition. We define a proper right ideal I of a ring R to be weakly prime if
0 6= JK ⊆ I implies either J ⊆ I or K ⊆ I for any right ideals J,K of R.

For a ring R that is not square zero, Koh [3] showed that R is simple and
a ∈ aR for all a ∈ R if and only if every right ideal of R is prime. We
now briefly consider the structure of rings in which every right ideal is weakly
prime. Considering the commutative case, it is evident that such rings need
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not be simple. Example 6(b) gives an example of a ring R = R2 in which every
right and left ideal is weakly prime.

Unlike the case of weakly prime two sided ideals, there exists a nonzero
idempotent weakly prime right ideal that is not prime. For example, if we let
R = { [ a b0 c ]| a, b, c ∈ F}, then K = { [ 0 0

0 t ]| t ∈ F} is a weakly prime right ideal
and K2 = K 6= 0. But K is not a prime right ideal.

We conclude this paper with the following theorem, which is a generalization
of Corollary 7.

Theorem 6. Suppose that every right ideal of a ring R is weakly prime. Then
one of the following holds:

(a) R2 = 0.
(b) R has a square zero maximal ideal.
(c) R is a direct sum of two division rings.

To prove this, we will use the following folk theorem. It is undoubtedly
well-known, but we include a proof for the sake of completeness.

Proposition 8. Let R be a nonzero ring, and suppose aR = R for all nonzero
a ∈ R. Then R is a division ring.

Proof. First note that R has no zero divisors. For if a, b 6= 0 and ab = 0, then
0 = abR = aR = R, a contradiction.

Fix a 6= 0. By hypothesis, there exists e ∈ R so that ae = a. Then
(ae − ea)2 = 0, so ae = ea. Thus ear = ar for all r ∈ R; since aR = R, e is a
left-identity.

Since e2 = e, we have xe2 = xe for all x ∈ R. Thus (xe − x)e = 0, whence
xe = x and e is a two-sided identity.

Since xR = R for all nonzero x, it is clear that all nonzero elements of R are
units. Hence R is a division ring. �

Proof of Theorem 6. Assume the hypothesis, so Corollary 4 applies. Suppose
R2 6= 0.

If N(R) is prime, then every right ideal of R/N(R) is prime, so R/N(R) is
simple by [3]. Thus N(R) is the square zero maximal ideal.

If N(R) is not prime, then there exist two minimal prime ideals I, J with
N(R) = I ∩ J and IJ = JI = 0. Again, every right ideal of R/I and R/J is
prime, so I, J are maximal ideals and R = I+J . We must show that I ∩J = 0
and that I, J are division rings.

Let b ∈ J \I. Note that bJ 6= 0 (If bJ = 0, then the left annihilator of J must
contain the ideal generated by b, namely J . But then J2 = 0, a contradiction).
Since (I+bJ)J = IJ+bJ2 = 0+bJ 6= 0, either I+bJ ⊆ bJ ⊆ J (contradicting
I * J) or J ⊆ bJ ⊆ J . Hence rJ = J for all r ∈ J \ I. By Proposition 8,
J/N(R) is a division ring, as is I/N(R) by symmetry.

Suppose, by way of contradiction, that N(R) contains an element n 6= 0.
Since N(R) ⊂ J , there exists c ∈ J such that bc = n 6= 0. Since JI = 0 we
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must have c ∈ J \ I. But N(R) ⊂ I implies 0 = nJ = bcJ = bJ = J , giving
the desired contradiction. So I ∩ J = N(R) = 0, completing the proof. �
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