On Commutativity of σ-Prime Γ-Rings

Kalyan Kumar Dey* and Akhil Chandra Paul
Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh
e-mail : kkdmath@yahoo.com and acpaulrubd_math@yahoo.com

Bijan Davvaz
Department of Mathematics, Yazd University, Yazd, Iran
e-mail: davvaz@yazd.ac.ir
Abstract. Let U be a σ-square closed Lie ideal of a 2 -torsion free σ-prime Γ-ring M. Let $d \neq 1$ be an automorphism of M such that $[u, d(u)]_{\alpha} \in Z(M)$ on $U, d \sigma=\sigma d$ on U, and there exists u_{0} in $S a_{\sigma}(M)$ with $M \Gamma u_{0} \subseteq U$. Then, $U \subseteq Z(M)$. By applying this result, we generalize the results of Oukhtite and Salhi respect to Γ-rings. Finally, for a non-zero derivation of a 2 -torsion free σ-prime Γ-ring, we obtain suitable conditions under which the Γ-ring must be commutative.

1. Introduction

Let M and Γ be additive abelian groups. If there is a mapping $M \times \Gamma \times M \rightarrow M$ (sending $(a, \alpha, b) \mapsto a \alpha b)$ which satisfies the conditions
(1) $(a+b) \alpha c=a \alpha c+b \alpha c, a(\alpha+\beta) b=a \alpha b+a \beta b, a \alpha(b+c)=a \alpha b+a \alpha c$,
(2) $(a \alpha b) \beta c=a \alpha(b \beta c)$,
for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. Then, M is a Γ-ring in the sense of Barnes [1].
Example 1. Every associative ring is a Γ-ring. In this case Γ is a single element set.

Example 2. Let $R=M_{m \times n}(D)$, the set of all matrices of type $m \times n$ over a division ring D and $\Gamma=M_{n \times m}(D)$, the set of all matrices of type $n \times m$ over a division ring D. Now, we define the map $R \times \Gamma \times R \longrightarrow R$ by $(A, B, C) \longmapsto A B C$, for all $A, C \in R$ and $B \in \Gamma$. Then, R is a Γ-ring.

[^0]Let R be a Γ-ring. A subset of I of R is a left ideal of R if I is an additive subgroup of R and $R \Gamma I=\{r \alpha a \mid r \in R, \alpha \in \Gamma, a \in I\}$ is contained in I. Similarly, we can define a right ideal of R. If I is both a left and a right ideal, then I is a two-sided ideal, or simply an ideal of R.

Throughout the paper, we consider M to be the Γ-ring with center $Z(M)$. A Γ-ring M is called a 2-torsion free if $2 a=0$ implies $a=0$, for all $a \in M$. And M is called commutative if $a \alpha b=b \alpha a$ holds, for all $a, b \in M$ and $\alpha \in \Gamma$. We use the notation $[a, b]_{\alpha}$ for the commutator a and b with respect to α and defined by $[a, b]_{\alpha}=a \alpha b-b \alpha a$. By the commutator, it is clear that M is commutative if and only if $[a, b]_{\alpha}=0$, for all $a, b \in M$ and $\alpha \in \Gamma$. In our present paper we assume a condition

$$
\begin{equation*}
a \alpha b \beta c=a \beta b \alpha c \tag{1.1}
\end{equation*}
$$

for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$. According to this condition the basic commutator identities reduce to the form

$$
[a \alpha b, c]_{\beta}=[a, c]_{\beta} \alpha b+a \alpha[b, c]_{\beta} \text { and }[a, b \alpha c]_{\beta}=[a, b]_{\beta} \alpha c+b \alpha[a, c]_{\beta},
$$

for all $a, b, c \in M$ and $\alpha, \beta \in \Gamma$, which are extensively used in our paper. The concepts of a homomorphism and an automorphism were first introduced by Barnes [1] in Γ-rings in the following manner. Let M and N both be Γ-rings, and φ a map of M into N. Then, φ is called a homomorphism if $\varphi(a+b)=\varphi(a)+\varphi(b)$ and $\varphi(a \alpha b)=\varphi(a) \alpha \varphi(b)$, for all $a, b \in M$ and $\alpha \in \Gamma$. If $M=N$, then φ is called an automorphism of M. The notion of derivation and Jordan derivation of a Γ ring have been introduced by Sapanci and Nakajima [16]. Then in view of some significant results due to Jordan left derivation of a classical ring obtained Jun and Kim in [7], some extensive results of left derivation and Jordan left derivation of a Γ-ring were determined by Ceven in [2]. Afterwards Halder and Paul [4] extended this remarkable result in square closed Lie ideals of a Γ-ring. Let M be a Γ-ring, An additive mapping $d: M \rightarrow M$ is called a derivation if $d(a \alpha b)=d(a) \alpha b+a \alpha d(b)$ is satisfies for all $a, b \in M, \alpha \in \Gamma$. Lie and Jordan structure of simple Γ-rings have been studied by Paul and Uddin in $[13,14]$. They generalized some significant results made by Herstien [6] in Γ-rings. Following, Paul and Uddin studied on simple Γ-rings with involution in [15]. Haldar and Paul [3] worked on σ-prime Γ rings by means of a non-zero derivation and obtained some commutativity results of a 2 -torsion free σ-prime Γ-ring. Let M be a Γ-ring. An additive subgroup U of M is called a Lie ideal of M if $[u, m]_{\alpha} \in U$, for all $u \in U, m \in M$ and $\alpha \in \Gamma$. A Lie ideal is said to be a square closed Lie ideal of M if $u \alpha u \in U$, for all $u \in U$ and $\alpha \in \Gamma$. An additive mapping $\sigma: M \rightarrow M$ is called an involution if $\sigma(a)=a$ and $\sigma(a \alpha b)=\sigma(b) \alpha \sigma(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$. An ideal I of M is called $\sigma \sigma$-ideal if $\sigma^{2}(I)=I$. A Lie ideal U of M is called a σ-Lie ideal if $\sigma(U)=U$. A Lie ideal U is called σ-square closed if it is square closed together with it is a σ-Lie ideal. Let us assume that M be a Γ-ring having an involution σ. Now, we define the set $S a_{\sigma}(M)=\{m \in M: \sigma(m)= \pm m\}$. For this definition we have seen that
$S a_{\sigma}(M)$ contains both symmetric and skew symmetric elements of M. Recall that M is said to be a σ-prime if $a \Gamma M \Gamma b=a \Gamma M \Gamma \sigma(b)=0$ implies that $a=0$ or $b=0$. From about fifty years, many authors worked on Γ-rings and extended the results of the classical rings theories to Γ-ring theories. For these purposes, we study on Γ-rings for generalizing the results of rings in Γ-rings. In classical ring theories, a number of research works has done by Oukhtite and Salhi [11] and they extended the results of prime rings to σ-prime rings. Khan, Arora and Khan [8] obtained some commutativity results of σ-prime rings with a non-zero derivation. In the present paper, we generalize the results of [11] in Γ-rings. Let M be a 2 -torsion free σ-prime Γ-ring satisfying the condition (1.1) and let U be a σ-square closed ideal of M. If $d \neq 1$ is an automorphism of M such that $[u, d(u)]_{\alpha} \in Z(M)$ on U, $d \sigma=\sigma d$ on U, and there exists u_{0} in $S a_{\sigma}(M)$ with $M \Gamma u_{0} \subseteq U$, then U is central on M. In view of this result, we generalize other results of [11] in Γ-rings. At last we obtain some suitable conditions of a 2 -torsion free σ-prime Γ-ring in which it must be commutative by means of non-zero derivation of M.

2. Automorphisms Centralizing on σ-Square Closed Lie Ideals

Throughout this section M will denote a 2 -torsion free σ-prime Γ-ring, where σ is an involution of M.

Lemma 2.1. If d is a homomorphism of M in which $[U, d(U)]_{\Gamma} \subseteq Z(M)$ on a square closed Lie ideal U of M, then $[U, d(U)]_{\Gamma}=0$.
Proof. For all $u \in U$ and $\alpha \in \Gamma$, we have $[u, d(u)]_{\alpha} \in Z(M)$. By linearization we have $[u, d(v)]_{\alpha}+[v, d(u)]_{\alpha} \in Z(M)$, for all $u, v \in U$ and $\alpha \in \Gamma$. Replacing v by $u \beta u$, we obtain

$$
\begin{aligned}
& {[u, d(u \beta u)]_{\alpha}+[u \beta u, d(u)]_{\alpha}} \\
& =[u, d(u) \beta d(u)]_{\alpha}+[u \beta u, d(u)]_{\alpha} \\
& =d(u) \beta[u, d(u)]_{\alpha}+[u, d(u)]_{\alpha} \beta d(u)+u \beta[u, d(u)]_{\alpha}+[u, d(u)]_{\alpha} \beta u \\
& =(d(u)+u) \beta[u, d(u)]_{\alpha}+d(u) \beta[u, d(u)]_{\alpha}+u \beta[u, d(u)]_{\alpha}\left(\text { since }[u, d(u)]_{\alpha} \in Z(M)\right) \\
& =(d(u)+u) \beta[u, d(u)]_{\alpha}+(d(u)+u) \beta[u, d(u)]_{\alpha} \\
& =2(d(u)+u) \beta[u, d(u)]_{\alpha} \in Z(M) .
\end{aligned}
$$

For $m \in M$, we then get,

$$
\begin{aligned}
\left.m \delta(d(u)+u) \beta[u, d(u)]_{\alpha}\right) & =(d(u)+u) \beta[u, d(u)]_{\alpha} \delta m \\
& =(d(u)+u) \beta m \delta[u, d(u)]_{\alpha} \\
& =(d(u)+u) \delta m \beta[u, d(u)]_{\alpha}(\text { by }(1.1) .
\end{aligned}
$$

Hence, $[m, u+d(u)]_{\delta} \beta[u, d(u)]_{\alpha}=0$, for all $m \in M$ and $\delta \in \Gamma$. In particular, $0=[u, u+d(u)]_{\alpha} \beta[u, d(u)]_{\alpha}=[u, d(u)]_{\alpha} \beta[u, d(u)]_{\alpha}$. Now, we have $y \gamma[u, d(u)]_{\alpha} \beta[u, d(u)]_{\alpha}=[u, d(u)]_{\alpha} \gamma y \beta[u, d(u)]_{\alpha}=0$, since $[u, d(u)]_{\alpha} \in Z(M)$. Therefore,

$$
[u, d(u)]_{\alpha} \gamma y \beta[u, d(u)]_{\alpha} \delta \sigma\left([u, d(u)]_{\alpha}\right)=0
$$

and since $[u, d(u)]_{\alpha} \delta \sigma\left([u, d(u)]_{\alpha}\right)$ is invariant under σ, the σ-primeness of M yields $[u, d(u)]_{\alpha}=0$ or $[u, d(u)]_{\alpha} \delta \sigma\left([u, d(u)]_{\alpha}\right)=0$. If $[u, d(u)]_{\alpha} \delta \sigma\left([u, d(u)]_{\alpha}\right)=0$, then $[u, d(u)]_{\alpha} \beta y \delta \sigma\left([u, d(u)]_{\alpha}\right)=0$, for all $y \in M$ and $\beta \in \Gamma$, because $[u, d(u)]_{\alpha} \in Z(M)$, and consequently $[u, d(u)]_{\alpha} \beta y \delta[u, d(u)]_{\alpha}=[u, d(u)]_{\alpha} \beta y \delta \sigma\left([u, d(u)]_{\alpha}=0\right.$. By using the σ-primeness of M, we get $[u, d(u)]_{\alpha}=0$, for all $u \in U$ and $\alpha \in \Gamma$. From now we may assume that d is an automorphism such that $[u, d(u)]_{\alpha} \in Z(M)$ on a σ-square closed Lie ideal U which contains an element u_{0} in $S a_{\sigma}(M)$ such that $m \alpha u_{0} \in U$, for all $u \in M$ and $\alpha \in \Gamma$. Since d has the property $[u, d(u)]_{\alpha} \in Z(M)$ on U, Lemma 2.1 implies $[u, d(u)]_{\alpha}=0$, for all $u \in U$ and $\alpha \in \Gamma$.

Lemma 2.2. If $a, b \in M$ are such that $a \alpha U \beta b=a \alpha U \beta \sigma(b)=0$, for all $\alpha, \beta \in \Gamma$, then $a=0$ or $b=0$.
Proof. Suppose that $a \neq 0$. Then, there are two cases:
Case 1: $u_{0} \in Z(M)$.
Let $m \in M$ and $\gamma \in \Gamma$. From $a \alpha m \gamma u_{0} \beta b=a \alpha m \gamma u_{0} \beta \sigma(b)=0$, we obtain $a \alpha m \gamma u_{0} \beta b=a \alpha m \gamma u_{0} \beta \sigma(b)=a \alpha m \gamma \sigma\left(u_{0} \beta b\right)=0$. Since M is σ-prime, $u_{0} \beta b=0$. Then, $m \alpha u_{0} \beta b=0$, for all $m \in M$ and $\alpha \in \Gamma$. Since $u_{0} \in Z(M)$, then $u_{0} \alpha m \beta b=$ $\sigma\left(u_{0}\right) \alpha m \beta b=0$, proving $b \neq 0$.

Case 2: $u_{0} \notin Z(M)$.
If $a \alpha\left[r, u_{0}\right]_{\gamma}=0$, for all $r \in M$ and $\gamma \in \Gamma$, then

$$
0=a \alpha\left[m \delta r, u_{0}\right]_{\gamma}=a \alpha m \delta\left[r, u_{0}\right]_{\gamma}+a \alpha\left[m, u_{0}\right]_{\gamma} \delta r=a \alpha m \delta\left[r, u_{0}\right]_{\gamma}
$$

so that $a \alpha m \delta\left[r, u_{0}\right]_{\gamma}=0=a \alpha m \delta \sigma\left(\left[r, u_{0}\right]_{\gamma}\right)$ proving $\left[r, u_{0}\right]_{\gamma}=0$, for all $r \in M$ and $\gamma \in \Gamma$ which contradicts $u_{0} \notin Z(M)$. Thus, there exists m in M such that $a \alpha\left[m, u_{0}\right]_{g} a m m a \neq 0$. From $a \alpha\left[m, u_{0}\right]_{\gamma} \delta r \beta b=a \alpha\left[m, u_{0}\right]_{\gamma} \delta r \beta \sigma(b)=0$, it gives that $a \alpha\left[m, u_{0}\right]_{\gamma} \delta M \beta b=a \alpha\left[m, u_{0}\right]_{\gamma} \delta M \beta \sigma(b)=0$ and since M is σ-prime, $b=0$.

Lemma 2.3. Let d commutes with σ on U. If $u \in U \cap S a_{\sigma}(M)$ satisfies $d(u) \neq u$, then $u \in Z(M)$.
Proof. Let Suppose that $u \in U S a_{\sigma}(M)$ with $d(u) \neq u$. From $[v, d(v)]_{\alpha}=0$, for all $v \in U$ and $\alpha \in \Gamma$. By linearization, we obtain $[w, d(v)]_{\alpha}+[v, d(w)]_{\alpha}=0$, for all $v, w \in U$ and $\alpha \in \Gamma$. This gives $[w, d(v)]_{\alpha}=[d(w), v]_{\alpha}$, for all $v, w \in U$ and $\alpha \in \Gamma$. In particular, $[u, d(2 u \beta v)]_{\alpha}=[d(u), 2 u \beta v]_{\alpha}$ because $2 u \beta v \in U$, for all $\beta \in \Gamma$. By the 2 -torsion freeness of M, we obtain $d(u) \beta[u, d(v)]_{\alpha}=u \beta[d(u), v]_{\alpha}$, since $[u, d(u)]_{\alpha}=0$. Thus, $d(u) \beta[d(u), v]_{\alpha}=u \beta[d(u), v]_{\alpha}$, since $[w, d(v)]_{\alpha}=[d(w), v]_{\alpha}$. This gives $(d(u)-u) \beta[d(u), v]_{\alpha}=0$, for all $v \in U$ and $\alpha, \beta \in \Gamma$.

Replacing v by $2 w \delta v$, we obtain $(d(u)-u) \beta[d(u), w \delta v]_{\alpha}=0$, for all $v, w \in U$ and $\alpha, \beta, \delta \in \Gamma$. This yields $(d(u)-u) \beta w \delta[d(u), v]_{\alpha}+(d(u)-u) \beta[d(u), w]_{\alpha} \delta v=0$, for all $v, w \in U$ and $\alpha, \beta, \delta \in \Gamma$. This gives

$$
(d(u)-u) \beta U \delta[d(u), v]_{\alpha}=(d(u)-u) \beta U \delta \sigma\left([d(u), v]_{\alpha}\right)=0
$$

for all $v, w \in U$ and $\alpha, \beta, \delta \in \Gamma$. Since $d(u) \neq u$, by Lemma 2.2, $[d(u), v]_{\alpha}=0$, for
all $v \in U$ and $\beta \in \Gamma$. Therefore,

$$
\begin{aligned}
{\left[d(u), t \beta r \gamma u_{0}\right]_{\alpha} } & =t \beta\left[d(u), r \gamma u_{0}\right]_{\alpha}+[d(u), t]_{\alpha} \beta r \gamma u_{0} \\
& =[d(u), t]_{\alpha} \beta r \gamma u_{0}=0,
\end{aligned}
$$

for all $t, r \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Thus, $[d(u), t]_{\alpha} \beta M \gamma u_{0}=0$. This proves that $[d(u), t]_{\alpha}=0$, so that $d(u) \in Z(M)$. Since d is an automorphism, $u \in Z(M)$.
Theorem 2.4. Let M be a 2-torsion free σ-prime Γ-ring satisfying the condition (1.1) having an automorphism $d \neq 1$ such that $[u, d(u)]_{\alpha} \in Z(M)$ on a σ-square closed Lie ideal U. If d commutes with σ on U and there exists u_{0} in $S a_{\sigma}(M)$ with $M \Gamma u_{0} \subseteq U$, then $U \subseteq Z(M)$.
Proof. Suppose that d is identity on U. Then, for all $t, m \in M, \alpha, \beta \in \Gamma$, we have $d\left(t \alpha m \beta u_{0}\right)=t \alpha m \beta u_{0}=d(t) \alpha d\left(m \beta u_{0}\right)=d(t) \alpha m \beta u_{0}$. Thus, $(d(t)-t) \alpha m \beta u_{0}=0$, so that $(d(t)-t) \alpha M \beta u_{0}=0$. Since M is σ-prime this gives $d(t)=t$, for all $t \in M$ which is impossible. So, d is non-trivial on U. Since M is 2-torsion free, the fact that $u+\sigma(u)$ and $u-\sigma(u)$ are in $U \cap S a_{\sigma}(M)$, for all u in U such that d is non-trivial on $U \cap S a_{\sigma}(M)$. So, there must be an element u in $U \cap S a_{\sigma}(M)$ such that $u \neq d(u)$ and by Lemma 2.3, $u \in Z(M)$. Let $0 \neq v$ be in $U \cap S a_{\sigma}(M)$ and not be in $Z(M)$. Again using Lemma 2.3, we have $d(v)=v$. But $d(u \alpha v)=d(u) \alpha v=u \alpha v$ so that $(d(u)-u) \alpha v=0$. Since $u \in Z(M)$, we have $(d(u)-u) \beta m \alpha v=(d(u)-u) \beta m \alpha \sigma(v)=$ 0 , for all $m \in M$ and $\alpha, \beta \in \Gamma$. This yields $v=0$, since M is σ-prime. Therefore, for all v in $U \cap S a_{\sigma}(M), v$ must be in $Z(M)$. Now, let u be in U. The fact $u-\sigma(u)$ and $u+\sigma(u)$ are elements in $U \cap S a_{\sigma}(M)$ and hence $u-\sigma(u) \in Z(M)$ and $u+\sigma(u) \in Z(M)$. These two relations yield that $2 u \in Z(M)$. Consequently, $u \in Z(M)$ and that proves that $U \subseteq Z(M)$.
Theorem 2.5. Let M be a 2-torsion free σ-prime Γ-ring satisfying the condition (1.1) having an automorphism $d \neq 1$ which commutes with on a non-zero σ-ideal I of M. If $[a, d(a)]_{\alpha} \in Z(M)$, for all $a \in I$ and $\alpha \in \Gamma$, then M is a commutative Γ-ring.
Proof. We know that a σ-ideal is a σ-square closed Lie ideal. So, by Theorem 2.4, $I \subseteq Z(M)$. Now, if $a \alpha a=0$, for all $a \in I$ and $\alpha \in \Gamma$, then $(\sigma(a)+a) \alpha(\sigma(a)+a)=0$. As $\sigma(\sigma(a)+a)=\sigma(a)+a$, the fact that $(\sigma(a)+a) \alpha M \beta(\sigma(a)+a)=0$, for all $\beta \in \Gamma$. By the σ-primeness of M, we have $\sigma(a)=-a$. But $a \alpha a=0$ implies that $a \alpha M \beta a=0$ so that $a=0$ which contradicts $I \neq 0$. Thus, there exists an element $a \in I$ such that $a \alpha a \neq 0$, for all $\alpha \in \Gamma$. For all $m, n \in M$ and $\beta, \delta \in \Gamma$, we have

$$
\begin{aligned}
a \alpha a \beta m \delta n & =a \alpha(a \beta m) \delta n \\
& =a \alpha(m \beta a) \delta n \\
& =(a \alpha m) \beta a \delta n \\
& =m \alpha a \beta a \delta n \\
& =a \alpha n \beta m \delta a \\
& =a \alpha a \beta n \delta m .
\end{aligned}
$$

Hence, $a \alpha a \beta[m, n]_{\delta}=0$. Thus, $a \alpha a \beta x \gamma[m, n]_{\delta}=0$, for all $x \in M$ and $\gamma \in \Gamma$. Similarly, we have $a \alpha a \beta x\left([m, n]_{\delta}\right)=0$, for all $x \in M$ and $\gamma \in \Gamma$. Since $a \alpha a \neq 0$,
the σ-primeness of M yields $[m, n]_{\delta}=0$, for all $m, n \in M$ and $\delta \in \Gamma$. This proves that M is commutative.

3. Derivations in σ-Prime Γ-Rings

Let M be a 2 -torsion free σ-prime Γ-ring satisfying the condition (1.1) and let $d \neq 0$ be a derivation on M. In this section, we develop suitable conditions under which the Γ-ring M must be commutative. For this purpose we frequently use the following lemma.

Lemma 3.1. Let $I \neq 0$ be a σ-ideal of M. If $a, b \in M$ are such that $a \Gamma I \Gamma b=0=$ $a \Gamma \Gamma \Gamma \sigma(b)$, then $a=0$ or $b=0$.
Proof. Suppose that $a \neq 0$. Then, there exists some $x \in I$ such that $a \alpha x \neq 0$, for all $\alpha \in \Gamma$. Indeed, otherwise $a \alpha m \beta x=0$ and $a \alpha m \beta \sigma(x)=0$, for all $x \in I, m \in M$, $\beta \in \Gamma$. So, $a=0$. Since $a \alpha I \Gamma M \beta b \subseteq a \alpha I \beta b=0$ and $a \alpha I \Gamma M \beta \sigma(b) \subseteq a \alpha I \beta \sigma(b)=0$, for all $\alpha, \beta \in \Gamma$. In particular, $a \alpha x \Gamma M \beta b=a \alpha x \Gamma M \beta \sigma(b)=0$ gives that $b=0$ by the σ-primeness of M.

Theorem 3.2. Let $0 \neq d$ be a derivation of M and let I be a non-zero σ-ideal of M. If m in $S a_{\sigma}(M)$ satisfies $[d(a), m]_{\alpha}=0$, for all $a \in I$ and $\alpha \in \Gamma$, then $m \in Z(M)$. Furthermore, if $d(I) \subseteq Z(M)$, then M is commutative.
Proof. For all $a, b \in I$ and $\beta \in \Gamma$, we have $[d(a b), m]_{\alpha}=0$. It yields that

$$
\begin{aligned}
& 0=[d(a) \beta b+a \beta d(b), m]_{\alpha} \\
& =[d(a) \beta b, m]_{\alpha}+[a \beta d(b), m]_{\alpha} \\
& =d(a) \beta[b, m]_{\alpha}+[d(a), m]_{\alpha} \beta b+a \beta[d(b), m]_{\alpha}+[a, m]_{\alpha} \beta d(b) \\
& =d(a) \beta[b, m]_{\alpha}+[a, m]_{\alpha} \beta d(b)
\end{aligned}
$$

by using $[d(a), m]_{\alpha}=0=[d(b), m]_{\alpha}$. Hence, we obtain

$$
\begin{equation*}
d(a) \beta[b, m]_{\alpha}+[a, m]_{\alpha} \beta d(b)=0 \tag{3.1}
\end{equation*}
$$

for all $a, b \in I, \alpha, \beta \in \Gamma$. Replacing b by $b \gamma m$ in (3.1), we obtain

$$
d(a) \beta[b \gamma m, m]_{\alpha} \beta+[a, m]_{\alpha} \beta d(b \gamma m)=0 .
$$

This gives that

$$
\left(d(a) \beta b \gamma[m, m]_{\alpha}+d(a) \beta[b, m]_{\alpha} \beta m+[a, m]_{\alpha} \beta(d(b) \gamma m+b \gamma d(m))=0\right.
$$

Therefore,

$$
\left(d(a) \beta[b, m]_{\alpha}+[a, m]_{\alpha} \beta d(b)\right) \gamma m+[a, m]_{\alpha} \beta b \gamma d(m)=0
$$

Using (refe2), we obtain that $[a, m]_{\alpha} \beta b \gamma d(m)=0$. This yields $[a, m]_{\alpha} \beta I \gamma d(m)=0$. The fact that I is a σ-ideal together with m in $S a_{\sigma}(M)$, give $\sigma\left([a, m]_{\alpha}\right) \beta I \gamma d(m)=$ $[a, m]_{\alpha} \beta I \gamma d(m)=0$. By Lemma 3.1, we obtain that $[a, m]_{\alpha}=0$ or $d(m)=0$. If
$d(m) \neq 0$, then $[a, m]_{\alpha}=0$, for all $a \in I$ and $\alpha \in \Gamma$. Let $t \in M$. Now, we have $[t \beta a, m]_{\alpha}=t \beta[a, m]_{\alpha}+[t, m]_{\alpha} \beta a$. Since $[a, m]_{\alpha}=0$, we have $[t, m]_{\alpha} \beta a=0$. Let $0 \neq a_{0} \in I$. Then,

$$
[t, m]_{\alpha} \beta M \gamma a_{0}=[t, m]_{\alpha} \beta M \gamma \sigma\left(a_{0}\right)=0
$$

Since M is σ-prime, $[t, m]_{\alpha}=0$, which proves that m in $Z(M)$. Now, if $d(m)=0$, then $d\left([a, m]_{\alpha}\right)=[d(a), m]_{\alpha}+[a, d(m)]_{\alpha}$ yields that $0=d\left([a, m]_{\alpha}\right)=[d(a), m]_{\alpha}$ and consequently

$$
\begin{equation*}
d\left([I, M]_{\Gamma}\right)=0 \tag{3.2}
\end{equation*}
$$

Replace b by $b \gamma c$ in (3.1), where $c \in I$ and $\gamma \in \Gamma$, we have

$$
\begin{aligned}
& 0=d(a) \beta[b \gamma c, m]_{\alpha}+[a, m]_{\alpha} \beta d(b \gamma c) \\
& =d(a) \beta b \gamma[c, m]_{\alpha}+d(a) \beta[b, m]_{\alpha} c+[a, m]_{\alpha} \beta(d(b) \gamma c+b \gamma d(c)) \\
& =d(a) \beta b \gamma[c, m]_{\alpha}+[a, m]_{\alpha} b \gamma d(c)+\left(d(a) \beta[b, m]_{\alpha}+[a, m]_{\alpha} \beta d(b)\right) \gamma d(c) .
\end{aligned}
$$

By using (3.1), we have

$$
\begin{equation*}
d(a) \beta b \gamma[c, m]_{\alpha}+[a, m]_{\alpha} \beta b \gamma d(c)=0 . \tag{3.3}
\end{equation*}
$$

Now, putting $[c, m]_{\alpha}$ for c in (3.3), we obtain

$$
d(a) \beta b \gamma\left[[c, m]_{\alpha}, m\right]_{\alpha}+[a, m]_{\alpha} \beta b \gamma d\left([c, m]_{\alpha}\right)=0 .
$$

Using (3.2), we have $d(a) \beta b \gamma\left[[c, m]_{\alpha}, m\right]_{\alpha}=0$ so that $d(a) \beta I \gamma\left[[c, m]_{\alpha}, m\right]_{\alpha}=0=$ $d(a) \beta I \gamma \sigma\left(\left[[c, m]_{\alpha}, m\right]_{\alpha}\right)$. By Lemma 3.1, we obtain that $d(a)=0$ or $\left[[c, m]_{\alpha}, m\right]_{\alpha}=$ 0 , for all $a, c \in I, m \in M$ and $\alpha \in \Gamma$. If $d(a)=0$, for all $a \in I$, then for any $t \in M$ we get $d(t \alpha a)=d(t) \alpha a=0$, for all $a \in I$ and $\alpha \in \Gamma$. Since $m \beta a \in I$, for all $m \in M$ and $\beta \in \Gamma$, we have $d(t) \alpha m \beta a=d(t) \alpha m \beta \sigma(a)=0$ and as $0 \neq I$, then $d(t)=0$, for all $t \in M$. Consequently,

$$
\begin{equation*}
\left[[c, m]_{\alpha}, m\right]_{\alpha}=0 \tag{3.4}
\end{equation*}
$$

Replace c by $c \beta a$ in (3.4) we have

$$
\begin{aligned}
& 0=\left[[c \beta a, m]_{\alpha}, m\right]_{\alpha}=\left[c \beta[a, m]_{\alpha}+[c, m]_{\alpha} \beta a, m\right]_{\alpha} \\
& \left.=\left[c \beta[a, m]_{\alpha}, m\right]_{\alpha}+[c, m]_{\alpha} a, m\right]_{\alpha} \\
& =c \beta\left[[a, m]_{\alpha}, m\right]_{\alpha}+[c, m]_{\alpha} \beta[a, m]_{\alpha}+\left[[c, m]_{\alpha}, m\right]_{\alpha} \beta a+[c, m]_{\alpha} \beta[a, m]_{\alpha} \\
& =[c, m]_{\alpha} \beta[a, m]_{\alpha}+[c, m]_{\alpha} \beta[a, m]_{\alpha},
\end{aligned}
$$

by using (3.4). This yields $2[c, m]_{\alpha} \beta[a, m]_{\alpha}=0$. Hence, by using the 2 -torsion freeness of M, we obtain

$$
\begin{equation*}
[c, m]_{\alpha} \beta[a, m]_{\alpha}=0 \tag{3.5}
\end{equation*}
$$

Now, replacing c by $y \gamma c$, for all $y \in I$ and $\gamma \in \Gamma$, we have $[y \gamma c, m]_{\alpha} \beta[a, m]_{\alpha}=0$. This follows that

$$
\begin{aligned}
0 & =\left(y \gamma[c, m]_{\alpha}+[y, m]_{\alpha} \gamma c\right) \beta[a, m]_{\alpha} \\
& =y \gamma[c, m]_{\alpha} \beta[a, m]_{\alpha}+[y, m]_{\alpha} \gamma c \beta[a, m]_{\alpha} \\
& =[y, m]_{\alpha} \gamma c \beta[a, m]_{\alpha}
\end{aligned}
$$

by using (3.5). Hence, we have $[y, m]_{\alpha} \gamma I \beta[a, m]_{\alpha}=0$, for all $a \in I$ and $\alpha, \beta, \gamma \in \Gamma$. Therefore,

$$
[y, m]_{\alpha} \gamma I \beta[a, m]_{\alpha}=0=[y, m]_{\alpha} \gamma I \beta \sigma\left([a, m]_{\alpha}\right)
$$

for all $a \in I$ and $\alpha, \beta, \gamma \in \Gamma$. By using Lemma 3.1 we have seen that $[y, m]_{\alpha}=0$ or $[a, m]_{\alpha}=0$. If $[y, m]_{\alpha}=0$, then $m \in Z(M)$. If $[a, m]_{\alpha}=0$, for all $a \in I$ and $\alpha \in \Gamma$. For $x \in M$ and $\beta \in \Gamma$, we have $0=[x \beta a, m]_{\alpha}=x \beta[a, m]_{\alpha}+[x, m]_{\alpha} \beta a=$ $[x, m]_{\alpha} \beta a=0$. Hence, $0=[x, m]_{\alpha} \beta I=[x, m]_{\alpha} \beta I \gamma 1=[x, m]_{\alpha} \beta I \gamma \sigma(1)$. Once again using Lemma 3.1, we have $[x, m]_{\alpha}=0$, which gives that m is in $Z(M)$.

Now, assume that $d(I) \subseteq Z(M)$ and let m in M. We see that we conclude $S a_{\sigma}(M) \subseteq Z(M)$ by the first part of the theorem. Consider the fact, we obtain that $m+\sigma(m)$ and $m-\sigma(m)$ are elements of $S a_{\sigma}(M)$ and then we conclude that $m+\sigma(m) \in Z(M)$ and $m-\sigma(m) \in Z(M)$ and therefore $2 m$ is in $Z(M)$. By the 2-torsion freeness of $M, m \in Z(M)$ proving the commutativity of M.

Theorem 3.3. Let $d \neq 0$ be a derivation of M and let $a \in S a_{\sigma}(M)$. If $d\left([m, a]_{\alpha}\right)=$ 0 , for all $m \in M$ and $\alpha \in \Gamma$, then $a \in Z(M)$. In particular, if $d\left([x, y]_{\alpha}\right)=0$, for all $x, y \in M$ and $\alpha \in \Gamma$, then M is commutative.
Proof. If $d(a)=0$, then by hypothesis,

$$
0=d\left([m, a]_{\alpha}\right)=[d(m), a]_{\alpha}+[m, d(a)]_{\alpha}==[d(m), a]_{\alpha} .
$$

Hence, $[d(m), a]_{\alpha}=0$, for all $m \in M$ and $\alpha \in \Gamma$. By Theorem 3.2, $a \in Z(M)$.
If $d(a) \neq 0$, then we have

$$
\begin{aligned}
0=d\left([a \beta m, a]_{\alpha}\right) & =d\left(a \beta[m, a]_{\alpha}+[a, a]_{\alpha} \beta m\right) \\
& =d\left(a \beta[m, a]_{\alpha}\right) \\
& \left.=d(a) \beta[m, a]_{\alpha}+a \beta[m, a]_{\alpha}\right) \\
& =d(a) \beta[m, a]_{\alpha}
\end{aligned}
$$

since $d\left([m, a]_{\alpha}\right)=0$, for all $m \in M$ and $\alpha \in \Gamma$. That is

$$
\begin{equation*}
d(a) \beta[m, a]_{\alpha}=0 \tag{3.6}
\end{equation*}
$$

For any $s \in M$ and $\gamma \in \Gamma$, we have $m \gamma s \in M$. Replacing m by $m \gamma s$ in (3.6), we have

$$
\begin{aligned}
0 & =d(a) \beta[m s, a]_{\alpha} \\
& =d(a) \beta\left(m \gamma[s, a]_{\alpha}+[m, a]_{\alpha} \gamma s\right) \\
& =d(a) \beta m \gamma[s, a]_{\alpha}+d(a) \beta[m, a]_{\alpha} \gamma s \\
& =d(a) \beta m \gamma[s, a]_{\alpha},
\end{aligned}
$$

by using (3.6), so that $d(a) \beta M \gamma[s, a]_{\alpha}=0$, for all s in M. Since $a \in S a_{\sigma}(M)$, we obtain

$$
d(a) \beta M \gamma[s, a]_{\alpha}=d(a) \beta M \gamma \sigma\left([s, a]_{\alpha}\right)=0,
$$

for all $s \in M$ and $\alpha, \beta, \gamma \in \Gamma$. Since M is σ-prime, we get that $[s, a]_{\alpha}=0$. This proves $a \in Z(M)$.

Now, suppose that $d\left([x, y]_{\alpha}\right)=0$, for all $x, y \in M, \alpha, \beta, \gamma \in \Gamma$. By using the first part of the theorem, we obtain that $S a_{\sigma}(M) \subseteq Z(M)$. For m in M, the fact that $m+\sigma(m)$ and $m-\sigma(m)$ are elements of $S a_{\sigma}(M)$. By the 2-torsion freeness of M, we get $m \in Z(M)$ and hence $M \subseteq Z(M)$. This implies that M is commutative.

References

[1] W. E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 8(1966), 411-422.
[2] Y. Ceven, Jordan left derivations on completely prime Г-ring, C.U. Fen-Edebiyat Fakultesi Fen Bilimlere Dergisi, 23(2)(2002), 39-43.
[3] A. K. Halder and A. C. Paul, Commutativity of two torsion free σ-prime with non-zero derivations, Journal of Physical Sciences, 15(2011), 27-32.
[4] A. K. Halder and A. C. Paul, Jordan left derivations on Lie ideals of prime Γ-rings, Panjab Univ. Journal of Math., 44(2012), 23-29.
[5] I. N. Herstein, Topic in ring theory, Univ of Chicago Press, Chicago, 1969.
[6] M. F. Hoque and A. C. Paul, On centralizers of semiprime gamma rings, Int. Math. Forum, 6(13)(2011), 627-638.
[7] K. W. Jun and B. D. Kim, A note on Jordan left derivations, Bull. Korean Math. Soc., 33(2)(1996), 221-228.
[8] M. R. Khan, D. Arora and M. A. Khan, Remarks on derivations of σ-prime rings, Inter. Journal of Algebra, 4(16)(2010), 761-767.
[9] N. Nabusawa, On a generalization of the ring theory, Osaka J. Math., 1(1964), 65-75.
[10] L. Oukhtite and S. Salhi, On commutativity of σ-prime rings, Glas. Mat. Ser. III, 41(1)(2006), 57-64.
[11] L. Oukhtite and S. Salhi, On derivations of σ-prime rings, Inter Journal of Algebra, 1(5)(2007), 241-246.
[12] L. Oukhtite and S. Salhi, σ-prime rings with a special kind of automorphism, Int. J. Contemp Math Sci., 2(3)(2004), 127-133.
[13] A. C. Paul and M. S. Uddin, Lie and Jordan structure in simple Γ-rings, Journal of Physical Sciences, 11(2010), 77-86.
[14] A. C. Paul and M. S. Uddin, Lie structure in simple gamma rings, International Journal of Pure and Applied Sciences and Technology, 4(2)(2010), 63-70.
[15] A. C. Paul and M. S. Uddin, Simple gamma rings with involutions, IOSR Journal of Mathematics, 4(3)(2012), 40-48.
[16] M. Sapanci and A. Nakajima, Jordan derivations on completely prime gamma rings, Math. Japonica, 46(1)(1997), 47-51.

[^0]: * Corresponding Author.

 Received July 27, 2013; accepted January 29, 2014.
 2010 Mathematics Subject Classification: 16W10, 16W25, 16W20, 16U80.
 Key words and phrases: Γ-Rings with involution, σ-prime Γ-rings, centralizing automorphisms, square closed Lie ideals, derivations, commutativity, σ-square closed ideal.

