• Title/Summary/Keyword: Polynomials

Search Result 1,512, Processing Time 0.024 seconds

UNIFIED APOSTOL-KOROBOV TYPE POLYNOMIALS AND RELATED POLYNOMIALS

  • Kurt, Burak
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.315-326
    • /
    • 2021
  • Korobov type polynomials are introduced and extensively investigated many mathematicians ([1, 8-10, 12-14]). In this work, we define unified Apostol Korobov type polynomials and give some recurrences relations for these polynomials. Further, we consider the q-poly Korobov polynomials and the q-poly-Korobov type Changhee polynomials. We give some explicit relations and identities above mentioned functions.

ON THE (p, q)-POLY-KOROBOV POLYNOMIALS AND RELATED POLYNOMIALS

  • KURT, BURAK;KURT, VELI
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.1_2
    • /
    • pp.45-56
    • /
    • 2021
  • D.S. Kim et al. [9] considered some identities and relations for Korobov type numbers and polynomials. In this work, we investigate the degenerate Korobov type Changhee polynomials and the (p,q)-poly-Korobov polynomials. We give a generalization of the Korobov type Changhee polynomials and the (p,q) poly-Korobov polynomials. We prove some properties and identities and explicit relations for these polynomials.

NOTES ON THE PARAMETRIC POLY-TANGENT POLYNOMIALS

  • KURT, BURAK
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.301-309
    • /
    • 2020
  • Recently, M. Masjed-Jamai et al. in ([6]-[7]) and Srivastava et al. in ([15]-[16]) considered the parametric type of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi polynomials. They proved some theorems and gave some identities and relations for these polynomials. In this work, we define the parametric poly-tangent numbers and polynomials. We give some relations and identities for the parametric poly-tangent polynomials.

A NEW CLASS OF GENERALIZED POLYNOMIALS ASSOCIATED WITH HERMITE-BERNOULLI POLYNOMIALS

  • GOUBI, MOULOUD
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.211-220
    • /
    • 2020
  • In this paper, we introduce and investigate a new class of generalized polynomials associated with Hermite-Bernoulli polynomials of higher order. This generalization is a unification formula of Bernoulli numbers, Bernoulli polynomials, Hermite-Bernoulli polynomials of Dattoli, generalized Hermite-Bernoulli polynomials for two variables of order α and new other families of polynomials depending on any generating function f.

HIGHER ORDER APOSTOL-TYPE POLY-GENOCCHI POLYNOMIALS WITH PARAMETERS a, b AND c

  • Corcino, Cristina B.;Corcino, Roberto B.
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.423-445
    • /
    • 2021
  • In this paper, a new form of poly-Genocchi polynomials is defined by means of polylogarithm, namely, the Apostol-type poly-Genocchi polynomials of higher order with parameters a, b and c. Several properties of these polynomials are established including some recurrence relations and explicit formulas, which are used to express these higher order Apostol-type poly-Genocchi polynomials in terms of Stirling numbers of the second kind, Apostol-type Bernoulli and Frobenius polynomials of higher order. Moreover, certain differential identity is obtained that leads this new form of poly-Genocchi polynomials to be classified as Appell polynomials and, consequently, draw more properties using some theorems on Appell polynomials. Furthermore, a symmetrized generalization of this new form of poly-Genocchi polynomials that possesses a double generating function is introduced. Finally, the type 2 Apostolpoly-Genocchi polynomials with parameters a, b and c are defined using the concept of polyexponential function and several identities are derived, two of which show the connections of these polynomials with Stirling numbers of the first kind and the type 2 Apostol-type poly-Bernoulli polynomials.

A NEW CLASS OF q-HERMITE-BASED APOSTOL TYPE FROBENIUS GENOCCHI POLYNOMIALS

  • Kang, Jung Yoog;Khan, Waseem A.
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.759-771
    • /
    • 2020
  • In this article, a hybrid class of the q-Hermite based Apostol type Frobenius-Genocchi polynomials is introduced by means of generating function and series representation. Several important formulas and recurrence relations for these polynomials are derived via different generating function methods. Furthermore, we consider some relationships for q-Hermite based Apostol type Frobenius-Genocchi polynomials of order α associated with q-Apostol Bernoulli polynomials, q-Apostol Euler polynomials and q-Apostol Genocchi polynomials.

ON MATRIX POLYNOMIALS ASSOCIATED WITH HUMBERT POLYNOMIALS

  • Pathan, M.A.;Bin-Saad, Maged G.;Al-Sarahi, Fadhl
    • The Pure and Applied Mathematics
    • /
    • v.21 no.3
    • /
    • pp.207-218
    • /
    • 2014
  • The principal object of this paper is to study a class of matrix polynomials associated with Humbert polynomials. These polynomials generalize the well known class of Gegenbauer, Legendre, Pincherl, Horadam, Horadam-Pethe and Kinney polynomials. We shall give some basic relations involving the Humbert matrix polynomials and then take up several generating functions, hypergeometric representations and expansions in series of matrix polynomials.

DEGENERATE POLYEXPONENTIAL FUNCTIONS AND POLY-EULER POLYNOMIALS

  • Kurt, Burak
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • Degenerate versions of the special polynomials and numbers since they have many applications in analytic number theory, combinatorial analysis and p-adic analysis. In this paper, we define the degenerate poly-Euler numbers and polynomials arising from the modified polyexponential functions. We derive explicit relations for these numbers and polynomials. Also, we obtain some identities involving these polynomials and some other special numbers and polynomials.

A NOTE ON MIXED POLYNOMIALS AND NUMBERS

  • Mohd Ghayasuddin;Nabiullah Khan
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.168-180
    • /
    • 2024
  • The main object of this article is to propose a unified extension of Bernoulli, Euler and Genocchi polynomials by means of a new family of mixed polynomials whose generating function is given in terms of generalized Bessel function. We also discuss here some fundamental properties of our introduced mixed polynomials by making use of the series arrangement technique. Furthermore, some conclusions of our present study are also pointed out in the last section.