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ON THE (p, q)-POLY-KOROBOV POLYNOMIALS AND
RELATED POLYNOMIALS†

BURAK KURT∗ AND VELI KURT

Abstract. D.S. Kim et al. [9] considered some identities and relations for
Korobov type numbers and polynomials. In this work, we investigate the
degenerate Korobov type Changhee polynomials and the (p,q)-poly-Korobov
polynomials. We give a generalization of the Korobov type Changhee poly-
nomials and the (p,q) poly-Korobov polynomials. We prove some properties
and identities and explicit relations for these polynomials.
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1. Introduction

A usual, throughout this paper, N denotes the set of natural numbers, N0

denotes the set of nonnegative integers, Z denotes the set of integer numbers, R
denotes the set of real numbers. We begin by introducing the following defini-
tions and notations (see also [2]-[17]). It is well known, the Bernoulli polynomials
B

(α)
n (x) of order α and the Euler polynomials E(α)

n (x) of order α are defined by
the following generating functions, respectively;

∞∑
n=0

B(α)
n (x)

tn

n!
=

(
t

et − 1

)α

ext, |t| < 2π (1)
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and
∞∑

n=0

E(α)
n (x)

tn

n!
=

(
2

et + 1

)α

ext, |t| < π. (2)

For x = 0, B(α)
n (0) = B

(α)
n and E(α)

n (0) = E
(α)
n are called the Bernoulli numbers

B
(α)
n of order α and the Euler numbers E(α)

n of order α.
Generating function for the Stirling numbers of the second kind in ([8], [9],

[10]) are given by
(et − 1)

k

k!
=

∞∑
n=k

S2(n, k)
tn

n!
. (3)

The polylogarithm function Lik(z) in ([2], [4], [5]) is defined

Lik(z) =

∞∑
n=1

zn

nk
, k ∈ Z, k > 1. (4)

This function is convergent for |z| < 1, when k = 1

Li1(z) = − log(1− z). (5)
The multi-logarithm [6] is defined by

Lik1,··· ,kn(z) =
∑

0<m1<···<mn

zmn

mk1
1 · · ·mkn

n

, ki ≥ 1, |z| < 1. (6)

From (6), the following equation can be obtain easily

Li1, · · · , 1︸ ︷︷ ︸
n times

(z) =
1

n!
(− log (1− z))

n . (7)

Kim et al. in [7] defined the poly-Bernoulli polynomials as
∞∑

n=0

B(k)
n (x)

tn

n!
=
Lik(1− e−t)

et − 1
ext. (8)

For k = 1, we have B(1)
n (x) = Bn(x).

Hamahata in [4] defined the poly-Euler polynomials as
2Lik(1− e−t)

t (et + 1)
ext =

∞∑
n=0

E(k)
n (x)

tn

n!
(9)

when k = 1, E(1)
n (x) = En (x).

For z = 1, multi-logarithm function is closely related to multiple zeta values
as

Lik1,··· ,kn
(1) = ζ (k1, · · · , kn) , ki ≥ 1, kn ≥ 2.

The special values of the multi-logarithm function (see detail in [5], [6]) are
following as

Li1(z) = − log(1− z), Li1,1(z) =
1

2!
(− log (1− z))

2 , · · ·
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Li1, · · · , 1︸ ︷︷ ︸
n times

(z) =
1

n!
(− log (1− z))

n . (10)

D. S. Kim et al. in [10] defined the Changhee polynomials and the first kind
Korobov polynomials the following generating functions, respectively,

∞∑
n=0

Chn (x)
tn

n!
=

2

t+ 2
(1 + t)

x (11)

and
∞∑

n=0

Kn (x | λ) t
n

n!
=

λt

(1 + t)
λ − 1

(1 + t)
x . (12)

When x = 0, Chn (0) = Chn and Kn (0 | λ) = Kn (λ) are called the Changhee
numbers and the Korobov numbers, respectively.

The Korobov-type Changhee polynomials in [10] are defined the following
generating function as

∞∑
n=0

Chn (x | λ) t
n

n!
=

2

(1 + t)
λ
+ 1

(1 + t)
x (13)

when x = 0, Chn (0 | λ) = Chn (λ) are called the Korobov-type Changhee
numbers. Note that

lim
λ→1

Chn (x | λ) = Chn (x) and lim
λ→0

Chn (x | λ) = (x)n

where
(x)n = x(x− 1) (x− 2) · · · (x− n+ 1). (14)

For λ ∈ R, Carlitz [3] introduced the degenerate Bernoulli polynomials by
means of the following generating function:

t

(1 + λt)
1/λ − 1

(1 + λt)
x/λ

=

∞∑
n=0

Bn (x | λ) t
n

n!
(15)

so that

Bn (x | λ) =
n∑

m=0

(
n

m

)
Bm (λ)

(x
λ

)
n−m

.

From (5), we note that
∞∑

n=0

lim
λ→0

Bn (x | λ) t
n

n!
= lim

λ→0

t

(1 + λt)
1/λ − 1

(1 + λt)
x/λ

=
t

et − 1
ext =

∞∑
n=0

Bn (x)
tn

n!

where Bn (x) are the Bernoulli polynomials.
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2. Degenerate Korobov-type Changhee Polynomials

In this section, we will give some relations and identities for the Changhee
polynomials and the Korobov-type Changhee polynomials. Further, we define
the degenerate Korobov-type Changhee polynomials and prove some relation-
ships for these polynomials.

From (13), we have following relations easily

Chn (x | λ) =
n∑

m=0

(
n

m

)
Chm (λ) (x)n−m ,

Chn (x+ y | λ) =
n∑

m=0

(
n

m

)
Chm (x | λ) (y)n−m

and

Ch(α+β)
n (x | λ) =

n∑
m=0

(
n

m

)
Ch(α)m (x | λ)Ch(β)n−m (λ) .

Theorem 2.1. The following relation holds true:
j∑

n=0

Chn(x | λ)S2(j, n) = Ej

(x
λ

)
λj. (16)

Proof. By replacing t by e−t − 1 in (13), we get
∞∑

n=0

Chn(x | λ) (e
−t − 1)

n

n!
=

2

e−tλ + 1
e−tx

∞∑
n=0

Chn(x | λ)
∞∑
j=0

S2(j, n) (−1)
j t

j

j!
=

∞∑
j=0

Ej

(x
λ

)
(−1)

j t
j

j!
.

From here, we get (16). �

From lim
λ→0

(1 + λt)
1/λ

= ext. We consider the degenerate function of t which
are given by

t = lim
λ→0

log (1 + λt)
1/λ

log(1+λt)
λ is called the degenerate function of t. Now we consider the degenerate

Korobov-type Changhee polynomials the following generating function as
∞∑

n=0

Chn,λ(x)
tn

n!
=

2(
1 + 1

λ log (1 + λt)
)λ

+ 1

(
1 +

1

λ
log (1 + λt)

)x

(17)

where λ ∈ R. For x = 0, Chn,λ(0) := Chn,λ is degenerate Korobov-type
Changhee numbers.
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Theorem 2.2. The following relation holds true:
∞∑
k=0

n∑
p=0

Chk,λ(x)p!
l
p

λp−k

k!

k∑
l=0

(
k

l

)
(−1)

k−l
S2 (n, p) = En

(x
λ

)
λn. (18)

Proposition 2.3. From (3) and by using t by eλ(e
t−1)−1
λ in (17), we get

∞∑
k=0

Chk,λ(x)
1

k!
λ−k

(
eλ(e

t−1) − 1
)k

=
2

etλ + 1
ext

∞∑
k=0

Chk,λ(x)
1

k!
λ−k

k∑
l=0

(
k

l

)
(−1)

k−l
eλl(e

t−1) =

∞∑
n=0

En

(x
λ

)
λn
tn

n!

∞∑
k=0

Chk,λ(x)
λ−k

k!

k∑
l=0

(
k

l

)
(−1)

k−l
∞∑
p=0

(λl)
p (et − 1)

p

p!
=

∞∑
n=0

En

(x
λ

)
λn
tn

n!

∞∑
k=0

Chk,λ(x)
λ−k

k!

k∑
l=0

(
k

l

)
(−1)

k−l
∞∑
p=0

(λl)
p

∞∑
n=0

S2 (n, p)
tn

n!
=

∞∑
n=0

En

(x
λ

)
λn
tn

n!
.

Comparing the coefficients of tn

n! both sides, we have (18).

3. On The (p, q)-Poly-Korobov Polynomials and Related Polynomials

In this section, we consider and investigate the (p, q)-poly-Korobov polynomi-
als and the (p, q)-poly-Korobov-type Changhee polynomials. Also, we give some
relations and identities for these polynomials.

Definition 3.1. We define the (p, q)-poly-Korobov polynomials and the (p, q)-
poly-Korobov-type Changhee polynomials as the following generating functions,
respectively:

∞∑
n=0

K(k)
n,p,q (x | λ) t

n

n!
=
λLik,p,q (1− e−t)

(t+ 1)
λ − 1

(1 + t)
x (19)

and
∞∑

n=0

Ch(k)n,p,q (x | λ) t
n

n!
=

2Lik,p,q (1− e−t)

t
(
(1 + t)

λ
+ 1
) (1 + t)

x (20)

where p, q real numbers such that 0 < q < p ≤ 1 and the polylogarithm function
is defined as

Lik,p,q(t) =

∞∑
n=1

tn

[n]
k
p,q

. (21)

The polynomialsK(k)
n,p,q (0 | λ) := K

(k)
n,p,q (λ) are called the (p, q)-poly-Korobov

numbers and the polynomials Ch(k)n,p,q (0 | λ) := Ch
(k)
n,p,q (λ) are called the (p, q)-

poly-Korobov-type Changhee numbers.
The polynomial [n]p,q = pn−qn

p−q is the n-th (p, q) integer [11].
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The first values of the (p, q)-polylogarithm function for k ≤ 0,

Li0,p,q(t) =
x

1− x
, Li−1,p,q(t) =

x

(1− px) (1− qx)
,

Li−2,p,q(t) =
x (1 + pqx)

(1− p2x) (1− q2x) (1− pqx)
, · · · .

The (p, q)-polylogarithm function for k ≤ 0 is a rational function. For k is a
nonnegative integer

Li−k,p,q(t) =

∞∑
n=1

xn

[n]
−k
p,q

=
1

(p− q)
k

k∑
l=0

(−1)
k−l

(
k

l

)
plqk−lx

1− plqk−lx
.

For n = 3 in (8), we get

Li1,1,1(t) =
1

3!
(− log (1− t))

3 . (22)

From (19) and (22), for k = p = q = 1, we write as
∞∑

n=0

K
(1)
n,1,1 (x | λ) t

n

n!
=
λLi1,1,1 (1− e−t)

(t+ 1)
λ − 1

(1 + t)
x

=
t2

3!

λt

(t+ 1)
λ − 1

(1 + t)
x
=

1

3!

∞∑
n=0

(n− 1)nKn−2 (x | λ) t
n

n!
.

Comparing the coefficients, we have

K
(1)
n,1,1 (x | λ) = 1

3!
n (n− 1)Kn−2 (x | λ) .

Similarly, from (20) and (22), for k = p = q = 1, we have

Ch
(1)
n,1,1 (x | λ) = 2

3!
n (n− 1)Chn−2 (x | λ) .

Theorem 3.2. The following relations holds true:

K(k)
n,p,q (x | λ) =

n∑
m=0

(
n

m

)
(x)n−m K(k)

m,p,q, (i)

Ch(k)n,p,q (x | λ) =
n∑

m=0

(
n

m

)
(x)n−m Ch(k)m,p,q,

K(k)
n,p,q (x+ y | λ) =

n∑
m=0

(
n

m

)
K(k)

m,p,q (x | λ) (y)n−m (ii)

and

Ch(k)n,p,q (x+ y | λ) =
n∑

m=0

(
n

m

)
Ch(k)m,p,q (x | λ) (y)n−m .
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Theorem 3.3. There are the following relationships for the (p, q)-poly-Korobov
polynomials and the (p, q)-poly-Korobov-type Changhee polynomials:

K(k)
n,p,q (x+ λ | λ)−K(k)

n,p,q (x | λ)

= λ

m∑
r=0

(
m

r

) ∞∑
n=0

(n+ 1)! (−1)
n+1+r

[n+ 1]
k
p,q

S2 (r, n+ 1) (x)m−r (23)

and

m
(
Ch

(k)
m−1,p,q (x+ λ | λ) + Ch

(k)
m−1,p,q (x | λ)

)
= 2

m∑
r=0

(
m

r

) ∞∑
n=0

(n+ 1)! (−1)
n+1+r

[n+ 1]
k
p,q

S2 (r, n+ 1) (x)m−r . (24)

Proof. By using (19) and (3), we write as
∞∑

n=0

(
K(k)

n,p,q (x+ λ | λ)−K(k)
n,p,q (x | λ)

) tn
n!

= λLik,p,q
(
1− e−t

)
(1 + t)

x

= λ

∞∑
n=0

(n+ 1)! (−1)
n+1

[n+ 1]
k
p,q

(e−t − 1)
n+1

(n+ 1)!

∞∑
l=0

(x)l
tl

l!

= λ

∞∑
n=0

(n+ 1)! (−1)
n+1

[n+ 1]
k
p,q

∞∑
r=0

S2 (r, n+ 1) (−1)
r t

r

r!

∞∑
l=0

(x)l
tl

l!
.

By using the Cauchy product rule and comparing the coefficient both sides, we
have (23).

The proof of equation (24) can be make easily, we omit it. �

Corollary 3.4. From (23) and (24), we have the following relationships between
the (p, q)-poly-Korobov polynomials and the (p, q)-poly-Korobov-type Changhee
polynomials:

2
(
K(k)

m,p,q (x+ λ | λ)−K(k)
m,p,q (x | λ)

)
= λm

(
Ch

(k)
m−1,p,q (x+ λ | λ) + Ch

(k)
m−1,p,q (x | λ)

)
.

Theorem 3.5. The following relation holds true:
m∑
r=0

(
m

r

)
K(k)

r,p,q (x | λ) (λ)m−r −K(k)
m,p,q (x | λ)

= λ

m∑
r=0

(
m

r

) ∞∑
n=0

(n+ 1)! (−1)
n+1+r

[n+ 1]
k
p,q

S2 (r, n+ 1) (x)m−r (25)

where is (x)n = x (x− 1) · · · (x− n+ 1).



52 B. Kurt and V. Kurt

Proposition 3.6. From (19), we write as
∞∑

n=0

K(k)
n,p,q (x | λ) t

n

n!

(
(t+ 1)

λ − 1
)
= λLik,p,q

(
1− e−t

)
(1 + t)

x

∞∑
n=0

K(k)
n,p,q (x | λ) t

n

n!

∞∑
l=0

(λ)l
tl

l!
−

∞∑
n=0

K(k)
n,p,q (x | λ) t

n

n!

= λ

∞∑
n=0

(n+ 1)! (−1)
n+1

[n+ 1]
k
p,q

∞∑
r=0

S2 (r, n+ 1) (−1)
r t

r

r!

∞∑
l=0

(λ)l
tl

l!
.

Using Cauchy product rule to every side of these equalities and comparing the
coefficients, we have (25).

Corollary 3.7. From (23) and (25), we have
m∑
r=0

(
m

r

)
K(k)

r,p,q (x | λ) (λ)m−r−K
(k)
m,p,q (x | λ) = K(k)

n,p,q (x+ λ | λ)−K(k)
n,p,q (x | λ) .

Theorem 3.8. The following relation holds true:
m∑
r=0

r

(
m

r

)
Ch

(k)
r−1,p,q (x | λ) (x)m−r +mCh

(k)
m−1,p,q (x | λ)

= 2

m∑
r=0

(
m

r

) ∞∑
n=0

(n+ 1)! (−1)
n+1+r

[n+ 1]
k
p,q

S2 (r, n+ 1) (x)m−r . (26)

Proof. By using (20), we write as
∞∑

n=0

Ch(k)n,p,q (x | λ) t
n+1

n!

(
(1 + t)

λ
+ 1
)
= 2Lik,p,q

(
1− e−t

)
(1 + t)

x

∞∑
m=0

mCh
(k)
m−1,p,q (x | λ) t

m

m!

∞∑
l=0

(λ)l
tl

l!
+

∞∑
m=0

Ch
(k)
m−1,p,q (x | λ) t

m

m!

= 2

∞∑
n=0

(n+ 1)! (−1)
n+1

[n+ 1]
k
p,q

∞∑
r=0

S2 (r, n+ 1) (−1)
r t

r

r!

∞∑
l=0

(x)l
tl

l!
.

Using Cauchy product rule to every side of these equalities and comparing the
coefficients, we have (26). �

Corollary 3.9. From (24) and (26), we have
m∑
r=0

r

(
m

r

)
Ch

(k)
r−1,p,q (x | λ) (x)m−r +mCh

(k)
m−1,p,q (x | λ)

= m
(
Ch

(k)
m−1,p,q (x+ λ | λ) + Ch

(k)
m−1,p,q (x | λ)

)
.
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Theorem 3.10. There is the following relationships between the (p, q)-poly-
Korobov polynomials and the Bernoulli polynomials

m∑
n=0

K(k)
n,p,q (x | λ)S2 (m,n) (−1)

m
=

m∑
l=0

(
m

l

)
Bm−l

(x
λ

)
(−λ)m−l (−1)

l
l!

[l + 1]
k
p,q

.

(27)

Proof. By replacing t by e−t − 1 in (19), we get
∞∑

n=0

K(k)
n,p,q (x | λ) (e

−t − 1)
n

n!
=

λe−tx

e−tλ − 1
Lik,p,q (−t)

= −1

t

(−λt)
e−tλ − 1

e−tλ( x
λ )Lik,p,q (−t)

= −1

t

∞∑
m=0

Bm

(x
λ

)
(−λ)m tm

m!

∞∑
l=0

(−1)
l+1

l!

[l + 1]
k
p,q

tl+1

l!

∞∑
n=0

K(k)
n,p,q (x | λ)

∞∑
m=n

S2 (m,n) (−1)
m tm

m!
=

∞∑
r=0

Br

(x
λ

)
(−λ)r t

r

r!

∞∑
l=0

(−1)
l
l!

[l + 1]
k
p,q

tl

l!
.

Using Cauchy product rule and comparing both sides of these equation, we have
(27). �

Theorem 3.11. There is the following relationships between the (p, q)-poly-
Korobov-type Changhee polynomials and the Euler polynomials:

∞∑
n=0

nCh
(k)
n−1,p,q (x | λ)S2 (r, n) (−1)

r
= r

r−1∑
l=0

(
r − 1

l

)
Er−1−l

(x
λ

) λr−l+1l!

[l + 1]
k
p,q

.

(28)

Proof. By replacing t by e−t − 1 in (20), we get
∞∑

n=0

Ch(k)n,p,q (x | λ) (e
−t − 1)

n

n!
=

2e−tx

(e−t − 1) (e−tλ + 1)
Lik,p,q (−t)

∞∑
n=0

Ch(k)n,p,q (x | λ) (e
−t − 1)

n+1

n!
=

∞∑
n=0

En

(x
λ

)
(−λ)n t

n

n!

∞∑
n=0

(−t)n+1

[n+ 1]
k
p,q

∞∑
n=0

(n+ 1)Ch(k)n,p,q (x | λ)
∞∑
r=0

S2 (r, n+ 1) (−1)
r t

r

r!

=

∞∑
r=0

(
r

r−1∑
l=0

(
r − 1

l

)
Er−1−l

(x
λ

)
(−λ)

r−1−l (−1)
r−1

l!

[l + 1]
k
p,q

)
tr

r!
.

Comparing the coefficients of tn

n! in both sides, we have (28). �



54 B. Kurt and V. Kurt

Theorem 3.12. The following relation holds true:

2

{
n∑

m=0

(
n

m

)
K(k)

m,p,q (x | λ) (λ)n−m −K(k)
n,p,q (x | λ)

}

= λn

{
n−1∑
m=0

(
n− 1

m

)
Ch(k)m,p,q (x | λ) (λ)n−m + Ch

(k)
n−1,p,q (x | λ)

}
. (29)

Proof. From (19) and (20), we write as

2

∞∑
n=0

K(k)
n,p,q (x | λ) t

n

n!

(
(t+ 1)

λ − 1
)
= λ

∞∑
n=0

Ch(k)n,p,q (x | λ) t
n

n!

(
(t+ 1)

λ
+ 1
)
t.

After making the mathematical operation for these equation, we have (29). �

Corollary 3.13. From (19) and (20), we have the following relationships be-
tween the (p, q)-poly-Korobov polynomials and the Korobov polynomials, the
(p, q)-poly-Korobov-type Changhee polynomials and the Korobov-type Changhee
polynomials, respectively,

nK(k)
n,p,q (x | λ) =

n∑
r=0

(
n

r

)
Kn−r (x | λ)

∞∑
l=0

(−1)
l+r

(l + 1)!

[l + 1]
k
p,q

S2(r, l + 1)

and

nCh
(k)
n−1,p,q (x | λ) =

n∑
r=0

(
n

r

)
Chn−r (x | λ)

∞∑
l=0

(−1)
l+r

(l + 1)!

[l + 1]
k
p,q

S2(r, l + 1).

4. Conclusion

The important subjects of the Analytic number theory are the Bernoulli poly-
nomials and Euler polynomials. Srivastava [15], Srivastava et al. in ([16], [17])
introduced and investigated some basic properties of these numbers and polyno-
mials. They proved some theorems and recurrences relations for these polynomi-
als. Carlitz [3] introduced degenerate Bernoulli polynomials. Bayad et al. in [2],
Hamahata [4], Imatomi et al. [5], Kim et al. ([6], [7]) considered and investigated
poly-Bernoulli and poly-Euler polynomials. Kim et al. ([9], [10]) and Kruchinin
[12] introduced Korobov polynomials. Kim et al. [10] considered the Korobov
type polynomials associated with p-adic integrals on Zp. Komatsu et al. [11]
introduced and investigated the (p, q)-analogue of poly-Euler polynomials.

In this work, we define the degenerate Korobov-type Changhee polynomi-
als. We give some relations between the Euler polynomials and the degener-
ate Korobov-type Changhee polynomials. Further, we consider the (p, q)-poly-
Korobov polynomials and the (p, q)-poly-Korobov type Changhee polynomials.
We give some recurrence relations and identities for the degenerate Korobov-type
Changhee polynomials and the (p, q)-poly-Korobov-type Changhee polynomials.
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