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DEGENERATE POLYEXPONENTIAL FUNCTIONS AND
POLY-EULER POLYNOMIALS

BURAK KURT

ABSTRACT. Degenerate versions of the special polynomials and numbers
since they have many applications in analytic number theory, combinato-
rial analysis and p-adic analysis. In this paper, we define the degenerate
poly-Euler numbers and polynomials arising from the modified polyex-
ponential functions. We derive explicit relations for these numbers and
polynomials. Also, we obtain some identities involving these polynomials
and some other special numbers and polynomials.

1. Introduction

Throughout this paper, N denotes the set of natural numbers, Ny denotes
the set of nonnegative integers and R denotes the set of real numbers. We
begin by introducing the following definitions and notations ([1-15]).

The classical Bernoulli polynomials B, (x), the classical Euler polynomi-
als E, () and the classical Genocchi polynomials G, (z) are defined by the
following generating functions ([2-15]) respectively;
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and
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when z = 0, B, (0) = B,, E,(0) = E, and G, (0) = G,, are called the
Bernoulli numbers, the Euler numbers and the Genocchi numbers, respectively.
For (A # 0) € R, the degenerate exponential function is defined by ([4-13]);
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Carlitz ([2,3]) considered the degenerate Bernoulli polynomials B,, » (z) and
the degenerate Euler polynomials E,, 5 (x) which are given by, respectively,
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when x = 0, By » (0) :== By, » and E,, » (0) := E,, » are called the degenerate
Bernoulli numbers and the degenerate Euler numbers, respectively.

Lim [14] considered the degenerate Genocchi polynomials which are given
by

N - t
(7) me,\(t) = ngogn,/\ (z)

when z =0, G, (0) := Gy, are called the degenerate Genocchi numbers.
From (6) and (7), we get

Gn+1,/\ (-77)
n+1

The degenerate Stirling numbers of the first kind Sy x(n, k) are defined by
([7,9,11])

Gox(zr)=0and E, ) (z) = n > 1.
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Note here that limy_,0 S1,x(n,1) = Si(n,l), where Si(n,l) are the Stirling
numbers of the first kind given by ([4,11])
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The degenerate Stirling numbers of the second kind are defined by ([7,9,11])
(ex(t) —1)F & tn
(10) - nz::OSz,A(na k)ﬁ

Observe that limy_,g Sz (n,1) = Sa2(n,l), where Sa(n,l) are the Stirling
numbers of the second kind given by ([4,11])

k e
(" —1)" "
(11) — —gSz(n,k)m, k> 0.
The degenerate Bernoulli polynomials of the second kind are given by [8]
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Note that limy_,0 b, x(x) = b, (x), where b, (x) are the Bernoulli polynomials
of the second kind given by

(13) mumw ngn@)f:.

2. Degenerate poly-Euler numbers and polynomials

In this section, we consider the modified degenerate polyexponential func-
tions. We give explicit relations for the modified degenerate polyexponential
functions. By using the modified degenerate polyexponential functions, we
introduce the degenerate poly-Euler numbers and polynomials.

Also, we give some relations and identities for these polynomials.

The polyexponential functions are defined by the following generating func-
tions ([6-8,10,13]);

o0
xn

14 Ei = —— k€.
For k =1, Ei; (z) = e* — 1.
The modified degenerate polyexponential function are given by ([6-8,10,13]);
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For k € Z and by means of the modified degenerate polyexponential function.
We define the degenerate poly-Euler polynomials by the following generating
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functions:
(k) " Eik7,\ (log)\ (1 + t)) =
( 6) n=0 5"»/\ (m) n! t (6)\ (t) 1) A (t)

When z = 0, Sflk;\ = 57(lk/)\ (0) are called the degenerate poly-Euler numbers
where logy (t) = § (t* —1) is the compositional inverse of ey (t) satisfying
log) (ex (t)) = ex (log, (1)) = t.

For k =1, we get
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From (16), we can easily deduce the following relationships involving the
modified degenerate poly-Euler polynomials
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By (8) and (15), we get

> (1 log, (1 "
Eig,a (logy (141)) = Z ( )n/\(é —gi)(!n: 2

> 1 1. (m N m
5 (R et



DEGENERATE POLYEXPONENTIAL FUNCTIONS AND . . . 23

Using (16) and (17), we write
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Therefore by (18), we obtain the following theorem.
Theorem 2.1. Forn > 0, we have
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From (16) and (17), we write as
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Therefore, by comparing the coefficients of iT' on both sides of (19), we have
the following theorem.

Theorem 2.2. Forn > 0, we have
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From (16) and (17), we write
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and
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By (20), we obtain the following theorem.

Theorem 2.3. Forn > 0, we have
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For x = 0, and by replacing t by ey (t) — 1 in (16), we get
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The left hand side of above equation (21) as
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The right hand side of above equation (21) as
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By (22) and (23), we have the following theorem.
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Theorem 2.4. Forn > 2, we have
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It is known that the following an equation
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By (24) comparing the coefficients of £ +1> we have this recovers Theorem 2.2

again.
From (15), we note that

(25) % Bijx (2) = - > (736” = — ik ().

Thus by (25), we get
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where k is a positive integer with k > 2.
From (12), (16) and (25), for k = 2;
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From (26), we have the following theorem.

Theorem 2.5. For n > 0, we have
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