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ON MATRIX POLYNOMIALS ASSOCIATED
WITH HUMBERT POLYNOMIALS

M.A. Pathan a, Maged G. Bin-Saad b, ∗ and Fadhl Al-Sarahi c

Abstract. The principal object of this paper is to study a class of matrix poly-
nomials associated with Humbert polynomials. These polynomials generalize the
well known class of Gegenbauer, Legendre, Pincherl, Horadam, Horadam-Pethe and
Kinney polynomials. We shall give some basic relations involving the Humbert
matrix polynomials and then take up several generating functions, hypergeometric
representations and expansions in series of matrix polynomials.

1. Introduction and Notations

Gould [6] (see also [11]) presented a systematic study of an interesting general-
ization of Humbert, Gegenbauer and several other polynomial systems defined by

(1.1) (c−mxt + ytm)−p =
∞∑

n=0

Pn (m,x, y, p, c) tn

where m is a positive integer, |t| < 1 and other parameters are unrestricted in gen-
eral. For the table of main special cases of (1.1), including Gegenbauer, Legendre,
Tchebycheff, Pincherle, Kinney and Humbert polynomials, see Gould [6]. In [10]
Milovanovic and Dordevic considered the polynomials

{
P λ

n,m

}∞
n

defined by the gen-
erating function

(1.2) (1− 2xt + tm)−λ =
∞∑

n=0

P λ
n,m (x) tn,

where m ∈ N := {1, 2, 3, ...}, |t| < 1 and λ > −1
2 .
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The explicit form of the polynomial P λ
n,m (x) is

(1.3) P λ
n,m (x) =

[n/m]∑

k=0

(−1)k(λ)n−(m−1)k(2x)n−mk

k!(n−mk)!
,

where the Pochhammer symbol is defined by (λ)n = Γ(λ+n)
Γ(λ) = λ(λ + 1)...(λ + n −

1), (∀n ≥ 1) and (λ)0 = 1.Γ(.) : is the familiar Gamma function.
Note that

P λ
n,2 (x) = Cλ

n (x) ,

where Cλ
n (x) are Gegenbauer polynomials [12]. The set of polynomials denoted by

Sν
n (x) considered by Sinha [17]

(1.4)
(
1− 2xt + t2(2x− 1)

)−ν =
∞∑

n=0

Sν
n (x) tn

is precisely a generalization of Sν
n (x) defined and studied by Shreshtha [16]. In [14]

the authors investigated Gegenbauer matrix polynomials defined by

(1.5)
(
1− 2xt + t2

)−A =
∞∑

n=0

CA
n (x) tn,

where A is a positive stable matrix in the complex space CN×N , C bing the set of
complex numbers, of all square matrices of common order N . The explicit represen-
tation of the Gegenbauer matrix polynomials CA

n (x) has been given in [14, p. 104
(15)] in the form

(1.6) CA
n (x) =

[n/2]∑

k=0

(−1)k(A)n−k(2x)n−2k

k!(n− 2k)!
.

In the last decade the study of matrix polynomials has been made more systematic
with the consequence that many basic results of scalar orthogonality have been
extended to the matrix case (see, for example [1]-[5] and [13]). We say that a matrix
A in CN×N is a positive stable if Re(λ) > 0 for all λ ∈ σ(A) where σ(A) is the set of
all eigenvalues of A. If A0, A1, . . . , An . . . , are elements of CN×N and An 6= 0, then
we call

P (x) = Anxn + An−1x
n−1 + An−2x

n−2 + . . . + A1x + A0,

a matrix polynomial of degree n in x. If A + nI is invertible for every integer n ≥ 0
then

(1.7) (A)n = A(A + I)(A + 2I) · · · (A + (n− 1)I);n ≥ 1; (A)0 = I
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Thus we have

(1.8)
(−1)k

(n− k)!
I =

(−n)k

n!
I =

(−nI)k

n!
; 0 ≤ k ≤ n.

The hypergeometric matrix function

(1.9) 2F1 [A,B; C; z] =
∞∑

n=0

1
n!

(A)n(B)n[(C)n]−1zn

where A,B and C are matrices in CN×N such that C + nI is invertible for integer
n ≥ 0 and |z| < 1. The generalized hypergeometric matrix function (see (1.9)) is
given in the form:

(1.10)
pFq [A1, A2, ..., Ap; C1, C2, ..., Cq; z]

=
∞∑

n=0

1
n!

(A1)n(A2)n · · · (Ap)n[(C1)n]−1....[(Cq)n]−1zn

For the purpose of this work we recall the following relations [12]:

(1.11) (1− x)−A =
∞∑

n=0

(A)n
xn

n!
, |x| < 1,

and

(1.12) (t− ν)n =
n∑

k=0

n!tk(−ν)n−k

k!(n− k)!
.

Also, we recall that if A(k, n) and B(k, n) are matrices in CN×N for n ≥ 0 and k ≥ 0
then it follows that [18]:

(1.13)
∞∑

n=0

∞∑

k=0

B(k, n) =
∞∑

n=0

n∑

k=0

B(k, n− k),

(1.14)
∞∑

n=0

[n/2]∑

k=0

B(k, n) =
∞∑

n=0

∞∑

k=0

B(k, n + 2k).

For m a positive integer, we can write

(1.15)
∞∑

n=0

n∑

k=0

A(k, n) =
∞∑

n=0

[n/m]∑

k=0

A(k, n− (m− 1)k),

(1.16)
∞∑

n=0

[n/m]∑

k=0

A(k, n) =
∞∑

n=0

∞∑

k=0

A(k, n + mk).

The primary goal of this work is to introduce and study a new class of matrix poly-
nomials, namely the Humbert Matrix polynomials PA

n,m(x, y; a, b, c), which is general
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enough to account for many of polynomials involved in generalized potential prob-
lems (see [9]-[11]). This is interesting since, as will be shown, the matrix polynomials
PA

n,m (x, y; a, b, c) is an extension to the matrix framework of the classical families of
the polynomials mentioned above.

2. Humbert Matrix Polynomials

Let A be a positive stable matrix in CN×N . We define the Humbert matrix
polynomials by means of the generating relation

(2.1) (c− axt + btm(2y − 1))−A =
∞∑

n=0

PA
n,m (x, y; a, b, c) tn

where m is a positive integer and other parameters are unrestricted in general. Based
on (1.11) and (1.12), formula (2.1) can be written in the form

∞∑

n=0

PA
n,m (x, y; a, b, c) tn =

∞∑

n=0

n∑

k=0

(−1)kc−A−nI(A)n

k!(n− k)!
(ax)n−k [b(2y − 1)]k tn+(m−1)k

which, in view of (1.15), gives us

(2.2)

∞∑

n=0

PA
n,m (x, y; a, b, c) tn

=
∞∑

n=0

[n/m]∑

k=0

(−1)kc−A−(n−(m−1)k)I(A)n+(1−m)k

k!(n−mk)!
(ax)n−mk [b(2y − 1)]k tn.

By equating the coefficients of tn in (2.2), we obtain an explicit representation for
the polynomials PA

n,m (x, y; a, b, c) in the form
(2.3)

PA
n,m (x, y; a, b, c) =

[n/m]∑

k=0

(−1)kc−A−(n−(m−1)k)I(A)n+(1−m)k

k!(n−mk)!
(ax)n−mk [b(2y − 1)]k .

Again, starting from (2.1), it is easily seen that

∞∑

n=0

PA
n,m (x, y; a, b, c) tn = c−A

[
1− axt

2c

]−2A
[
1−

a2x2t2

4c2
− b

c t
m(2y − 1)

(1− axt
2c )2

]−A

,

which, with the help of the results (1.11) and (1.12), gives



ON MATRIX POLYNOMIALS ASSOCIATED WITH HUMBERT POLYNOMIALS 211

(2.4)
∞∑

n=0

PA
n,m (x, y; a, b, c) tn

=
∞∑

n=0

[ n
m−1 ]∑

s=0

∞∑

k=
[

n−(m−2)s
2

]
c−A−(n−(m−2)s)I(−1)n(−(n− k))(m−1)s(A)n−k−(m−2)s

(2k − n + (m− 2)s)!s!(n− k)!

(2A + 2(n− k − (m− 2)s)I)2k−n+(m−2)s

(−ax

2

)n−(m−2)s (
4bc

a2x2
(2y − 1)

)s

tn,

m > 1.

By equating the coefficients of tn in (2.4), we obtain another explicit representation
for the polynomials PA

n,m (x, y; a, b, c) as follows:
(2.5)

PA
n,m (x, y; a, b, c)

=
[ n

m−1 ]∑

s=0

∞∑

k=
[

n−(m−2)s
2

]
c−A−(n−(m−2)s)!(−1)n(−(n− k))(m−1)s(A)n−k−(m−2)s

(2k − n + (m− 2)s)!s!(n− k)!

(2A + 2(n− k − (m− 2)s)I)2k−n+(m−2)s

(−ax
2

)n−(m−2)s (
4bc

a2x2 (2y − 1)
)s

,
m > 1.

According to the relation

(2.6)

(A)n−k−(m−2)s(2A + 2(n− k − (m− 2)s)I)2k−n+(m−2)s

=
(2A)n−(m−2)s

22k

[(
A +

1
2
I

)

n−k−(m−2)s

]−1

,

Equation (2.5) can be written in the form
(2.7)

PA
n,m (x, y; a, b, c)

=
[ n

m−1 ]∑

s=0

∞∑

k=
[

n−(m−2)s
2

]
c−A−(n−(m−2)s)I(−1)n(−(n− k))(m−1)s(2A)n−(m−2)s

(2k − n + (m− 2)s)!s!(n− k)!22k

[
(A + 1

2I)n−k−(m−2)s

]−1 (−ax
2

)n−(m−2)s (
4bc

a2x2 (2y − 1)
)s

, m > 1,

where A + 1
2I + (n− k(m− 2)s)I and 2A + (n− (m− 2)s)I are invertible.

Now, we mention some interesting special cases of our results of this section.
First, if in (2.3) and (2.5) we let y = 0, a = m and c = 1 = −b, we get

(2.8) hA
n,m (x) =

[n/m]∑

k=0

(−1)k(A)n+(1−m)k

k!(n−mk)!
(mx)n−mk,
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and

(2.9)
hA

n,m (x) =
[ n

m−1 ]∑

s=0

∞∑

k=
[

n−(m−2)s
2

]
(−1)n(−(n− k))(m−1)s(A)n−k−(m−2)s

(2k − n + (m− 2)s)!s!(n− k)!

(2A + 2(n− k − (m− 2)s)I)2k−n+(m−2)s

(−mx
2

)n−ms
, m > 1.

respectively, where hA
n,m is the matrix version of Humbert polynomials hν

n,m ( see
[11]).

Next, for m = 3, Equations (2.8) and (2.9) further reduce to following explicit
representations:

(2.10) PA
n (x) =

[n/3]∑

k=0

(−1)k(A)n−2k(3x)n−3s

k!(n− 3k)!

and

(2.11)
PA

n (x) =
[n
2 ]∑

s=0

∞∑

k=[n−s
2 ]

(−1)n(−(n− k))2s(A)n−k−s

(2k − n + s)!s!(n− k)!

(2A + 2(n− k − s)I)2k−n+s

(
3x
2

)n−3s
, m > 1,

respectively, where PA
n (x) is the matrix version of Pincherle polynomials Pn (x) [11].

Moreover, in view of the relationship ( see Equations (1.5) and (2.1) )

(2.12) PA
n,2 (x, 0; 2,−1, 1) = CA

n (x) ,

equation (2.3) reduces to finite series representation for the matrix Gegenbauer poly-
nomials CA

n (x) as follows:

(2.13) CA
n (x) = (2A)n

[n/2]∑

k=0

1
22kk!(n− 2k)!

[(
A +

1
2
I

)]−1 (
x2 − 1

)
k
xn−2k.

Note that equation (2.12) is a known result (see [14, p. 109 (40)]).

3. Hypergeometric Matrix Representations

Starting from (2.3) and using the results

(3.1) (−nI)mk = (−1)mk n!
(n−mk)!

I = mmk
m∏

i=1

(−n + i− 1
m

I

)

k
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and
(3.2)

(A)n−(m−1)k = (−1)(m−1)k(A)n


(m− 1)(m−1)k

m−1∏

j=1

(
(−A− nI) + jI

m− 1

)

k



−1

,

where
0 ≤ (m− 1)k ≤ n,

we get
(3.3)

PA
n,m (x, y; a, b, c) =

(A)nc−A−nI

n!
(ax)n

∞∑

k=0

m∏

i=1

(−n + i− 1
m

I

)

k


m−1∏

j=1

(
(−A− nI) + jI

m− 1

)

k



−1

c(m−1)kmmk [b(2y − 1)]k

k!(m− 1)(m−1)k(ax)mk
,

which, in view of (1.16), gives us the following hypergeometric matrix representation:
(3.4)

PA
n,m (x, y; a, b, c) =

(A)nc−A−nI

n!
(ax)n

mFm−1

[−n

m
I,
−n + 1

m
I, ...,

−n + m− 1
m

I;
−A + (n− 1)I

m− 1
, ...,

−A− (n−m + 1)I)
m− 1

;
cm−1mm [b(2y − 1)]k

(m− 1)m−1(ax)m

]
,

where A+nI and −A−(n−m+1)I
m−1 are invertible. According to the relationship (2.12),

Equation (3.4), yields the following known representation for the Gegenbauer matrix
polynomials CA

n (see [14, p. 109 (39)]):

(3.5) CA
n (x) =

(A)n(2x)n

n! 2F1

[−n

2
I,

1− n

2
I; I −A− nI; x−2

]
.

Next, if in (3.4) we put a = m, c = 1 = −b and y = 0, we get the following
representation for the matrix Humbert polynomials hA

n,m(x):
(3.6)

hA
n,m (x) =

(A)n

n!
(mx)n

mFm−1

[−n

m
I,
−n + 1

m
I, ...,

−n + m− 1
m

I;
−A− (n− 1)I

m− 1
, ...,

−A− (n−m + 1)I)
m− 1

;
1

(m− 1)m−1(x)m

]
.

4. More Generating Functions

By proceeding in a fashion similar to that in Section 2, in this section we aim at
establishing the following additional generating functions for the Humbert matrix



214 M.A. Pathan, Maged G. Bin-Saad & Fadhl Al-Sarahi

polynomilas PA
n,m (x, y; a, b, c) :

(4.1)
∞∑

n=0

PA
n,m (x, y; a, b, c) [(A)n]−1 tn =

∞∑

n=0

c−A−nI(axt)n

n!

1Fm

[
A + nI;

A + nI

m
,
A + (n + 1)I

m
, .....,

A + (n + m− 1)I
m

;
−btm(2y − 1)

mm

]
,

(4.2)

∞∑

n=0

(B)nPA
n,m (x, y; a, b, c) [(A)n]−1 tn

=
∞∑

n=0

c−A−nI(axt)n(B)n

n! m+1Fm

[
A + nI,

B + nI

m
,
B + (n + 1)I

m

....,
B + (n + m− 1)I

m
;
A + nI

m
,
A + (n + 1)I

m
,

.....,
A + (n + m− 1)I

m
;
−btm(2y − 1)

c

]
,

(4.3)
∞∑

n=0

PA
n,m (x, y; a, b, c) [(2A)n]−1 tn =

∞∑

n=0

∞∑

s=0

∞∑

k=[n+s
2 ]

(−1)n+kc−A(−2k)n+s(−n)k

22kn!(2k)!s!
[(

A +
1
2
I

)

n−k+s

(2A + (n− s)I)ms

]−1 (
axt

2c

)n [
2btm−1(2y − 1)

ax

]s

,

(4.4)
∞∑

n=0

(B)nPA
n,m (x, y; a, b, c) [(2A)n]−1 tn =

∞∑

n=0

∞∑

s=0

∞∑

k=[n+s
2 ]

(−1)n+kc−A(−2k)n+s(−n)k

22kn!(2k)!s!
[(

A +
1
2
I

)

n−k+s

(2A + (n− s)I)ms

]−1

(B)n+(m−1)s

(
axt

2c

)n [
2btm−1(2y − 1)

ax

]s

,

where A + nI, B + nI, 2A + (n + 2k)I + ((m − 2)s)I, B + (n + 2k)I ,A+(n+m−1)I
m

and B+(n+m−1)I
m are invertible matrices.

Derivation of the results (4.1) to (4.4). Starting from (2.3) and using the
results (1.14) and (3.1), we get
(4.5)
∞∑

n=0

PA
n,m (x, y; a, b, c) [(A)n]−1 tn =

∞∑

n=0

c−A−nI(axt)n

n!

∞∑

k=0

(A + nI)k

k!
[(

A + nI

m

)

k

(
A + (n + 1)I

m

)

k

· · ·
(

A + (n + m− 1)I
m

)

k

]−1(−btm(2y − 1)
cmm

)k

,
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which, on using the definition of the generalized matrix hypergeometric series (1.10),
gives us the generating function (4.1). This completes the proof of (4.1).
If B is a positve stable matrix in the complex space CN×N of all square matrices
of common order N , then following the method of derivation of equation (4.1) , we
can easily establish relation (4.2).
Again, starting from (2.5), and employing the results (2.6) and (1.16), we can derive
the result (4.3). The proof of Equation (4.4) is similar to that of (4.3). Therefore,
we skip the details.
It is easy to observe that the main results (4.1) to (4.4) give a number of generat-
ing functions of matrix version polynomials, for example, the matrix polynomials
P λ

n,m(x) (see (1.2)), the matrix versions of Pincherle, Humbert, Sinha, Sheshtha,
Kinney, Horadam and Horadam-Pethe polynomials (see [13] ).

5. Expansions

Expansion for the matrix polynomials PA
n,m (x, y; a, b, c) in series of Legendre,

Hermite, Gegenbauer and Laguerre polynomials relevant to our present investigation
are given as follows:
(5.1)

PA
n,m (x, y; a, b, c)

=
∞∑

s=0

∞∑

k=[n+s
2 ]

[n+s
2 ]∑

j=0

c−A−nI(−1)n+k(−n)k(−2k)n+s(n + 1)s [2(n + s)− 4j + 1]
s!j!(2k)!22k

(
3
2

)
n+s−j

(2A)n+s

[
(A +

1
2
I)n+s−k

]−1 (
4b

a2x2
(2y − 1)

)s

Pn+s−2j

(ax

4

)
,

(5.2)
PA

n,m (x, y; a, b, c)

=
∞∑

s=0

∞∑

k=[n+s
2 ]

[n+s
2 ]∑

j=0

c−A−nI(−1)n+k(−n)k(−2k)n+s(n + 1)s [ν + n + s− 2j]
s!j!(2k)!22k(ν)n+s−j+1

(2A)n+s

[
(A +

1
2
I)n+s−k

]−1 (
4b

a2x2
(2y − 1)

)s

Cν
n+s−2j

(ax

4

)
,

(5.3)

PA
n,m (x, y; a, b, c)

=
∞∑

s=0

∞∑

k=[n+s
2 ]

[n+s
2 ]∑

j=0

c−A−nI(−1)n+k+j(−n)k(−2k)n+s(n + 1)s

s!j!(2k)!2n+2k(n + s− 2j)!
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(2A)n+s

[
(A +

1
2
I)n+s−k

]−1 (
2b

a2x2
(2y − 1)

)s

Hn+s−2j

(ax

2

)
,

(5.4)

PA
n,m (x, y; a, b, c)

=
∞∑

s=0

∞∑

k=[n+s
2 ]

n+s∑

j=0

c−A−nI(−1)n+k(−n)k(−2k)n+s(n + 1)s(1 + α)n+s

s!j!(2k)!22k(1 + α)j(n + s− j)!

(2A)n+s

[
(A +

1
2
I)n+s−k

]−1 (
4b

a2x2
(2y − 1)

)s

L
(α)
j

(ax

2

)
,

where 2A + (n + s)I and A + (n + s− k)I + 1
2I are invertible matrices.

Derivation of the results (5.1) to (5.4). On inserting the result ( see [12, p.
181 (4)] )

(5.5)
(ax)n

n!
=

[n
2
]∑

s=0

(2n− 4s + 1)
s!

(
3
2

)
n−s

Pn−2s

(ax

2

)

in relation (2.7) , we get

PA
n,m (x, y; a, b, c)

=
[ n

m−1 ]∑

s=0

∞∑

k=
[

n−(m−2)s
2

]

[
n−(m−2)s

2

]
∑

j=0

c−A−(n−(m−2)s)I(−(n− k))(m−1)s

(−1)ms(2k − n + (m− 2)s)!

(2A)n−(m−2)s(n− (m− 2)s))! [2(n− (m− 2)s)− 4j + 1]

s!j!(n− k)!22k
(

3
2

)
n−(m−2)s−j[

(A +
1
2
I)n−k−(m−2)s

]−1 (
4bc

a2x2
(2y − 1)

)s

Pn−(m−2)ss−2j

(ax

4

)
,

which on using the result (1.16),and simplifying gives us (5.1). Similarly, the results
(5.2), (5.3) and (5.4) are obtained by using the known results [12, p. 283 (36), p.
194 (4), p. 207 (2)]

(5.6)
(2x)n

n!
=

[n
2
]∑

k=0

(ν + n− 2k)Cν
n−2k (x)

k!(ν)n+1−k
,

(5.7)
xn

n!
=

[n
2
]∑

k=0

Hn−2k(x)
2nk!(n− 2k)!

,

and

(5.8)
xn

n!
=

n∑

k=0

(−1)k(1 + α)nL
(α)
k (x)

(n− k)!(1 + α)k
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respectively, instead of (5.5).
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