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HIGHER ORDER APOSTOL-TYPE POLY-GENOCCHI

POLYNOMIALS WITH PARAMETERS a, b AND c

Cristina B. Corcino and Roberto B. Corcino

Abstract. In this paper, a new form of poly-Genocchi polynomials is de-

fined by means of polylogarithm, namely, the Apostol-type poly-Genocchi
polynomials of higher order with parameters a, b and c. Several prop-

erties of these polynomials are established including some recurrence re-
lations and explicit formulas, which are used to express these higher or-

der Apostol-type poly-Genocchi polynomials in terms of Stirling numbers

of the second kind, Apostol-type Bernoulli and Frobenius polynomials
of higher order. Moreover, certain differential identity is obtained that

leads this new form of poly-Genocchi polynomials to be classified as Ap-

pell polynomials and, consequently, draw more properties using some
theorems on Appell polynomials. Furthermore, a symmetrized general-

ization of this new form of poly-Genocchi polynomials that possesses a

double generating function is introduced. Finally, the type 2 Apostol-
poly-Genocchi polynomials with parameters a, b and c are defined using

the concept of polyexponential function and several identities are derived,

two of which show the connections of these polynomials with Stirling
numbers of the first kind and the type 2 Apostol-type poly-Bernoulli

polynomials.

1. Introduction

There are several variations of Genocchi numbers that appeared in the lit-
erature. These include the Genocchi polynomials and Genocchi polynomials of
higher order, which are respectively defined by

∞∑
n=0

Gn(x)
tn

n!
=

2t

et + 1
ext, |t| < π,(1)

∞∑
n=0

G(k)
n (x)

tn

n!
=

(
2t

et + 1

)k
ext,(2)
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and Apostol-Genocchi polynomials, and Apostol-Genocchi polynomials of
higher order, which are respectively defined by

∞∑
n=0

Gn(x, λ)
tn

n!
=

2t

λet + 1
ext,(3)

∞∑
n=0

G(k)
n (x, λ)

tn

n!
=

(
2t

λet + 1

)k
ext,(4)

(see [1,2,6,7,17,18,22]). Other interesting variations of Genocchi polynomials
can be found in the papers [11, 14, 16, 29], which contain remarkable results
that can possibly be the basis in generating identities for a higher level gener-
alization of Genocchi polynomials. It is also interesting to explore some other
known polynomials (e.g. [4,12,13,15,26]), which are closely related to Genocchi
polynomials.

Another variation of Genocchi numbers, also known as poly-Genocchi poly-
nomials, was introduced by Kim et al. [19] using the concept of kth polyloga-
rithm, denoted by Lik(z), which is given by

(5) Lik(z) =

∞∑
n=0

zn

nk
, k ∈ Z.

The poly-Genocchi polynomials were defined as follows:

(6)

∞∑
n=0

G(k)
n (x)

xn

n!
=

2Lik(1− et)
et + 1

ext.

Kim et al. [19] also defined a modified poly-Genocchi polynomials, denoted by

G
(k)
n,2(x), as follows:

(7)

∞∑
n=0

G
(k)
n,2(x)

xn

n!
=
Lik(1− e−2t)

et + 1
ext,

and obtained several properties of these polynomials. Note that, when k = 1,
Equations (6) and (7) give the Genocchi polynomials in (1). That is,

G(1)
n (x) = G

(1)
n,2(x) = Gn(x).

On the other hand, Kurt [23] defined two forms of generalized poly-Genocchi
polynomials with parameters a, b, and c, by

2Lik(1− (ab)−t)

a−t + bt
ext =

∞∑
n=0

G(k)
n (x; a, b, c)

xn

n!
,(8)

2Lik(1− (ab)−2t)

a−t + bt
ext =

∞∑
n=0

G
(k)
n,2(x; a, b, c)

xn

n!
,(9)
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which were motivated by the definitions (6) and (7), respectively. Kurt [23]
also derived several properties parallel to those of poly-Genocchi polynomials
by Kim et al. [19]. Note that, when x = 0, (6) reduces to

(10)
2Lik(1− et)

et + 1
=

∞∑
n=0

G(k)
n

xn

n!
,

where G
(k)
n are called the poly-Genocchi numbers.

In this paper, a new variation of poly-Genocchi polynomials with parame-
ters a, b and c, namely, the Apostol-type poly-Genocchi polynomials of higher
order with parameters a, b and c, will be investigated. Sections 2 and 3 provide
the definition of this new variation of poly-Genocchi polynomials, some special
cases and their relations with some Genocchi-type polynomials. Section 4 de-
votes its discussion on some identities that link the Apostol-type poly-Genocchi
polynomials of higher order with parameters a, b and c to Appell polynomials.
Section 5 focuses on the connections of these higher order Apostol-type polyno-
mials to Stirling numbers of the second kind and different variations of higher
order Bernoulli-type polynomials. Section 6 demonstrates the symmetrized
generalization of these higher order Apostol-type polynomials. Section 7 in-
troduces type 2 Apostol-poly-Genocchi polynomials with parameters a, b and
c using the concept of polyexponential function [21]. Section 8 contains the
conclusion of the paper.

2. Definition

Here, a new variation of poly-Genocchi polynomials, the Apostol-Type poly-
Genocchi polynomials of higher order with parameters a b and c will be intro-
duced.

Definition. The Apostol-type poly-Genocchi polynomials of higher order with

parameters a, b and c, denoted by G(k,α)n (x;λ, a, b, c), are defined as follows:

(11)
∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!
=

(
Lik(1− (ab)−2t)

a−t + λbt

)α
cxt, |t| <

√
(lnλ)2 + π2

| ln a+ ln b|
.

When α = 1, (11) yields

(12)

∞∑
n=0

G(k)n (x;λ, a, b, c)
tn

n!
=
Lik(1− (ab)−2t)

a−t + λbt
cxt, |t| <

√
(lnλ)2 + π2

| ln a+ ln b|
,

where G(k)n (x;λ, a, b, c) = G(k,1)n (x;λ, a, b, c) denotes the Apostol-type poly-
Genocchi polynomials with parameters a, b and c.

The following are special cases of the Apostol-type poly-Genocchi polyno-
mials of higher order with parameters a, b and c:



426 C. CORCINO AND R. CORCINO

1. When c = e, Equation (11) reduces to

(13)

∞∑
n=0

G(k,α)n (x;λ, a, b, e)
tn

n!
=

(
Lik(1− (ab)−2t)

a−t + λbt

)α
ext.

For convenience, G(k,α)n (x;λ, a, b) will be used to denote G(k,α)n (x;λ, a, b, e).
That is,

(14)

∞∑
n=0

G(k,α)n (x;λ, a, b)
tn

n!
=

(
Lik(1− (ab)−2t)

a−t + λbt

)α
ext.

2. When k = 1, (11) yields

(15)

∞∑
n=0

G(α)n (x;λ, a, b, c)
tn

n!
=

(
2t ln ab

a−t + λbt

)α
cxt, |t| <

√
(lnλ)2 + π2

| ln a+ ln b|
,

where the polynomials G(α)n (x;λ, a, b, c) = G(1,α)n (x;λ, a, b, c) will be called the
Apostol-type Genocchi polynomials of higher order with parameters a, b and
c. When α = 1, (15) yields

(16)

∞∑
n=0

G(1)n (x;λ, a, b, c)
tn

n!
=

2t ln ab

a−t + λbt
cxt, |t| <

√
(lnλ)2 + π2

| ln a+ ln b|
,

where the polynomials G(1)n (x;λ, a, b, c) will be called the Apostol-type Genocchi
polynomials with parameters a b and c.

3. When a = 1, b = e, (14) will reduce to

(17)

∞∑
n=0

G(k,α)n (x;λ, 1, e)
tn

n!
=

(
Lik(1− e−2t)

1 + λet

)α
ext.

We will use the notations

G(k,α)n (x;λ) = G(k,α)n (x;λ, 1, e) and G(k)n (x;λ) = G(k)n (x;λ, 1, e)

and call these polynomials Apostol-type poly-Genocchi polynomials of higher
order and Apostol-type poly-Genocchi polynomials, respectively.

4. When λ = 1, (17) gives

(18)

∞∑
n=0

G(k,α)n (x; 1)
tn

n!
=

(
Lik(1− e−2t)

1 + et

)α
ext,

which is the higher order version of Equation (7), i.e., the higher order version
of the modified poly-Genocchi polynomials of Kim et al. [19]. We will use

G
(k,α)
n,2 (x) to denote G(k,α)n (x; 1).
5. Using the fact that

Li1(z) = − ln(1− z),
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when k = 1, (17) gives

(19)

∞∑
n=0

G(1,α)n (x;λ)
tn

n!
=

(
2t

1 + λet

)α
ext,

and when λ = 1, (19) gives

∞∑
n=0

G(1,α)n (x; 1)
tn

n!
=

(
2t

1 + et

)α
ext,

where G(1,α)n (x;λ) and G(1,α)n (x; 1) are exactly the Genocchi polynomialsG
(k)
n (x)

and Apostol-Genocchi polynomials G
(k)
n (x, λ) of higher order in (4) and (2),

respectively.

3. Relations with some Genocchi-type polynomials

In this section, some relations for G(k,α)n (x;λ, a, b, c) expressed in terms of
some Genocchi-type polynomials will be established.

Theorem 3.1. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a, b, c satisfy the recurrence relation

(20) G(k,α)n (x+ 1;λ, a, b, c) =

n∑
r=0

(
n

r

)
(ln c)rG(k,α)n−r (x;λ, a, b, c).

Proof. Equation (11) can be written as

∞∑
n=0

G(k,α)n (x+ 1;λ, a, b, c)
tn

n!
=

(
Lik(1− (ab)−2t)

a−t + λbt

)α
ext ln cet ln c

=

{ ∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!

}{ ∞∑
n=0

(t ln c)n

n!

}

=
∞∑
n=0

n∑
r=0

G(k,α)n−r (x;λ, a, b, c)
tn−r

(n− r)!
(ln c)rtr

r!

=

∞∑
n=0

{
n∑
r=0

(
n

r

)
(ln c)rG(k,α)n−r (x;λ, a, b, c)

}
tn

n!
.

Comparing the coefficients of tn

n! completes the proof of the theorem. �

Consider a special case of (14) by taking x = 0. This gives

(21)

∞∑
n=0

G(k,α)n (0;λ, a, b)
tn

n!
=

(
Lik(1− (ab)−2t)

a−t + λbt

)α
.
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We use the notation G(k,α)i (λ, a, b) = G(k,α)i (0;λ, a, b) and call them the Apostol-
type poly-Genocchi numbers of higher order with parameters a and b. The fol-

lowing theorem contains an identity that expresses G(k,α)n (x;λ, a, b, c) as poly-

nomial in x, which involves G(k,α)i (λ, a, b) as coefficients.

Theorem 3.2. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a, b, c satisfy the relation

(22) G(k,α)n (x;λ, a, b, c) =

n∑
i=0

(
n

i

)
(ln c)n−iG(k,α)i (λ, a, b)xn−i.

Proof. Equation (11) can be written as
∞∑
n=0

G(k,α)n (x; a, b, c)
tn

n!
=

(
Lik(1− (ab)−2t)

a−t + λbt

)α
cxt = ext ln c

∞∑
n=0

G(k,α)n (λ, a, b)
tn

n!

=

∞∑
n=0

∞∑
i=0

(xt ln c)n−i

(n− i)!
G(k,α)i (λ, a, b)

ti

i!

=
∞∑
n=0

( ∞∑
i=0

(
n

i

)
(ln c)n−iG(k,α)i (λ, a, b)xn−i

)
tn

n!
.

Comparing the coefficients of tn

n! , we obtain the desired result. �

The next identity gives the relation between G(k,α)n (x;λ, a, b, c) and G(k,α)n (x;λ).

Theorem 3.3. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a, b, c satisfy the relation

(23) G(k,α)n (x;λ, a, b, c) = (ln a+ ln b)nG(k,α)n

(
x ln c+ α ln a

ln a+ ln b
;λ

)
.

Proof. Using (11), we have
∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!
=

(
Lik(1− (ab)−2t)

a−t(1 + λ(ab)t)

)α
ext ln c

= e
x ln c+α ln a

ln ab t ln ab

(
Lik(1− e−2t ln ab)

1 + λet ln ab

)α
=

∞∑
n=0

(ln a+ ln b)nG(k,α)n

(
x ln c+ α ln a

ln a+ ln b
;λ

)
tn

n!
.

Comparing the coefficients of tn

n! , we obtain the desired result. �

4. Classification as Appell polynomials

The following theorem contains a differential identity that can be used to
classify Apostol-type poly-Genocchi polynomials as Appell polynomials [24,27,
28].
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Theorem 4.1. The Apostol-type poly-Genocchi polynomials with parameters
a, b, c satisfy the relation

(24)
d

dx
G(k,α)n+1 (x;λ, a, b, c) = (n+ 1)(ln c)G(k,α)n (x;λ, a, b, c).

Proof. Applying the first derivative to Equation (11), we have

∞∑
n=0

d

dx
G(k,α)n (x;λ, a, b, c)

tn

n!
= t(ln c)

(
Lik(1− (ab)−2t)

(a−t + λbt)

)α
ext ln c,

∞∑
n=0

d

dx
G(k,α)n (x;λ, a, b, c)

tn−1

n!
=

∞∑
n=0

(ln c)G(k,α)n (x;λ, a, b, c)
tn

n!
.

Hence,
∞∑
n=0

1

n+ 1

d

dx
G(k,α)n+1 (x;λ, a, b, c)

tn

n!
=

∞∑
n=0

(ln c)G(k,α)n (x;λ, a, b, c)
tn

n!
.

Comparing the coefficients of tn

n! , we obtain the desired result. �

Remark 4.2. When c = e, Equation (24) reduces to

(25)
d

dx
G(k,α)n+1 (x;λ, a, b) = (n+ 1)G(k,α)n (x;λ, a, b),

which is one of the properties for the polynomial to be classified as Appell
polynomial.

Being classified as Appell polynomials, the generalized poly-Genocchi poly-

nomials G(k)n (x; a, b) must possess the following properties

G(k,α)n (x;λ, a, b) =

n∑
i=0

(
n

i

)
cix

n−i,

G(k,α)n (x;λ, a, b) =

( ∞∑
i=0

ci
i!
Di

)
xn

for some scalar ci 6= 0. It is then necessary to find the sequence {cn}. Using

(22) with c = e, ci = G(k,α)i (λ, a, b) which implies the following corollary.

Corollary 4.3. The Apostol-type poly-Genocchi polynomials with parameters
a, b, c satisfy the formula

G(k,α)n (x;λ, a, b) =

( ∞∑
i=0

G(k,α)i (λ, a, b)

i!
Di

)
xn.

For example, when n = 3,

G(k,α)3 (x;λ, a, b) =

( ∞∑
i=0

G(k,α)i (λ, a, b)

i!
Di

)
x3
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=
G(k,α)0 (λ, a, b)

0!
x3 +

G(k,α)1 (λ, a, b)

1!
D1x3

+
G(k,α)2 (λ, a, b)

2!
D2x3 +

G(k,α)3 (λ, a, b)

3!
D3x3

= G(k,α)0 (λ, a, b)x3 + 3G(k,α)1 (λ, a, b)x2

+ 3G(k,α)2 (λ, a, b)x+ G(k,α)3 (λ, a, b).

The next corollary immediately follows from Equation (25) and the character-
ization of Appell polynomials [24,27,28].

Corollary 4.4. The Apostol-type poly-Genocchi polynomials with parameters
a, b, c satisfy the addition formula

(26) G(k,α)n (x+ y;λ, a, b) =

∞∑
i=0

(
n

i

)
G(k,α)i (x;λ, a, b)yn−i.

Taking x = 0 in formula (26) and using the fact G(k)n (0;λ, a, b) = G(k)n (λ, a, b),
Corollary 4.4 gives formula (22) in Theorem 3.2 with c = e.

An extension of this addition formula can be derived as follows:

∞∑
n=0

G(k,α)n (x+ y;λ, a, b, c)
tn

n!
=

(
Lik(1− (ab)−2t)

(a−t + λbt)

)α
cxteyt ln c

=

( ∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!

)( ∞∑
n=0

(y ln c)n
tn

n!

)

=

∞∑
n=0

(
n∑
i=0

(
n

i

)
G(k,α)i (x;λ, a, b, c)(y ln c)n−i

)
tn

n!
.

Comparing the coefficients of tn

n! gives the following theorem.

Theorem 4.5. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a, b and c satisfy the addition formula

(27) G(k,α)n (x+ y;λ, a, b, c) =

∞∑
i=0

(
n

i

)
(ln c)n−iG(k,α)i (x;λ, a, b, c)yn−i.

By taking x = 0, Equation (27) exactly gives (22).

5. Connections with some special numbers and polynomials

In this section, some connections of the higher order Apostol-type poly-

Genocchi polynomials G(k,α)n (x;λ, a, b, c) with other well-known special numbers
and polynomials will be established.
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To introduce the first connection, we define an Apostol-type poly-Bernoulli
polynomials of higher order with parameters a, b and c as follows:

(28)

(
Lik(1− e−t)
λet − 1

)α
ext =

∞∑
n=0

B(k,α)n (x;λ)
xn

n!
.

When α = 1, (28) reduces to

(29)

(
Lik(1− e−t)
λet − 1

)
ext =

∞∑
n=0

B(k)n (x;λ)
xn

n!
,

where B(k)n (x;λ) = B(k,1)n (x;λ) denotes the Apostol-type poly-Bernoulli poly-
nomials with parameters a, b and c. When k = 1, (28) gives

(30)

(
t

λet − 1

)α
ext =

∞∑
n=0

B(1,α)n (x;λ)
xn

n!
,

where B(1,α)n (x;λ) = B
(α)
n (x;λ), the Apostol-Bernoulli polynomials of higher

order in [25]. Also, when λ = 1, (28) will give

(31)

(
Lik(1− e−t)

et − 1

)α
ext =

∞∑
n=0

B(k,α)n (x; 1)
xn

n!
,

where B(k,α)n (x; 1) = B
(k,α)
n (x), the higher order version of poly-Bernoulli poly-

nomials of Bayad and Hamahata [3, 20]. When α = 1, (31) reduces to the
definition of poly-Bernoulli numbers and polynomials [8–10,20].

Now, we are ready to introduce the following theorem.

Theorem 5.1. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a, b, c satisfy the relation

G(k,α)n (x;λ, a, b, c)

=

α∑
j=0

(
α

j

)
(−1)jλα−jB(k,α)n

(
(α− j) ln b+ x ln c+ (2α− j) ln a

2(ln a+ ln b)
;λ2
)

× 2n(ln a+ ln b)n.(32)

In particular, the Apostol-type poly-Genocchi polynomials with parameters a, b, c
satisfy the relation

G(k)n (x;λ, a, b, c) =

{
λB(k)n

(
ln b+ 2 ln a+ x ln c

2(ln a+ ln b)
;λ2
)

−B(k)n

(
ln a+ x ln c

2(ln a+ ln b)
;λ2
)}

2n(ln a+ ln b)n.(33)

Proof. Rewrite Equation (11) as
∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!
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=

(
Lik(1− (ab)−2t)

a−t + λbt

)α
ext ln c

=

(
Lik(1− (ab)−2t)

a−2t − (λbt)2
(a−t − λbt)

)α
ext ln c

=

(
Lik(1− (ab)−2t)

(1− (λ(ab)t)2)

)α
(e−t ln a − λet ln b)αext ln ce2αt ln a

=

(
Lik(1−e−2t(ln ab))
−(λe2t ln(ab) − 1)

)α (
et(− ln a+(x ln c/α)+2 ln a)−λet(ln b+(x ln c/α)+2 ln a)

)α
.

Applying the Binomial Theorem yields
∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!

=

(
Lik(1− e−2t(ln ab))
−(λe2t ln(ab) − 1)

)α α∑
j=0

(
α

j

)
(−λ)α−jejt(ln a+(x ln c/α))e(α−j)t(ln b+(x ln c/α)+2 ln a)

=
α∑
j=0

(
α

j

)
(−1)jλα−j

(
Lik(1− e−2t(ln ab))
λ2e2t ln(ab) − 1

)α
e[((α−j) ln b+x ln c+(2α−j) ln a)/2 ln ab](2t ln ab).

Using the definition of Apostol-type poly-Bernoulli polynomials in (28), we
have

∞∑
n=0

G(k)n (x;λ, a, b, c)
tn

n!

=
α∑
j=0

(
α

j

)
(−1)jλα−j

{ ∞∑
n=0

B(k,α)n

(
(α− j) ln b+ x ln c+ (2α− j) ln a

2(ln a+ ln b)
;λ2
)

2n(ln ab)n
tn

n!

}

=
∞∑
n=0


α∑
j=0

(
α

j

)
(−1)jλα−jB(k,α)n

(
(α− j) ln b+ x ln c+ (2α− j) ln a

2(ln a+ ln b)
;λ2
)

2n(ln ab)n

 tn

n!
.

Comparing the coefficients of tn

n! yields (32). �

The next theorem contains an identity that relates the Apostol-type poly-
Genocchi polynomials of higher order with parameters a, b and c to Stirling

numbers of the second kind
{
n

m

}
defined in [5] by

(34)

∞∑
n=m

{
n

m

}
tn

n!
=

(et − 1)m

m!
.

Here, it is important to note that if (c0, c1, . . . , cj , . . .) is any sequence of num-
bers and l is a positive integer, then ∞∑

j=0

cj
tj

j!

l

=

l∏
i=1

( ∞∑
ni=0

cni
ni!

tni

)
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=

∞∑
n=0

{ ∑
n1+n2+···+nα=n

l∏
i=1

cni

(
n

n1, n2, . . . , nα

)}
tn

n!
,(35)

(see [5]).

Theorem 5.2. The Apostol-type poly-Genocchi polynomials of higher order
with parameters a, b and c satisfy the relation

(36) G(k,α)n (x;λ, a, b, c) =

n∑
j=0

(
n

j

)
(ln a+ln b)n−jG(α)n−j

(
x ln c+ α ln a

ln a+ ln b
;λ

)
dj ,

where

dj =
∑

n1+n2+···+nα=j

α∏
i=1

cni

(
j

n1, n2, . . . , nα

)
and

cj =

j∑
m=0

(−1)m+1

(2 ln ab)jm!

{
j + 1

m+ 1

}
(j + 1)(m+ 1)k−1

.

Proof. Now, (11) can be written as

∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!

=
cxt

(a−t + λbt)α

( ∞∑
m=1

(1− e2t ln ab)m

mk

)α

=
cxt

(a−t + λbt)α

( ∞∑
m=0

(1− e2t ln ab)m+1

(m+ 1)k

)α

=
cxt

(a−t + λbt)α

( ∞∑
m=0

m!

(m+ 1)k−1
(1− e2t ln ab)m+1

(m+ 1)!

)α

=
cxt

(a−t + λbt)α

 ∞∑
m=0

(−1)m+1m!

(m+ 1)k−1

∞∑
j=m+1

{
j

m+ 1

}
(2t ln ab)j

j!

α

= cxt
(

2t ln ab

a−t + λbt

)α ∞∑
m=0

∞∑
j=m

(−1)m+1m!

{
j + 1

m+ 1

}
(j + 1)(m+ 1)k−1

(2t ln ab)j

j!


α

.

Using (15), we get

∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!
=

( ∞∑
n=0

G(α)n (x;λ, a, b, c)
tn

n!

) ∞∑
j=0

cj
tj

j!

α

,
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where

cj =

j∑
m=0

(−1)m+1

(2 ln ab)jm!

{
j + 1

m+ 1

}
(j + 1)(m+ 1)k−1

.

Note that, using (35),
(∑∞

j=0 cj
tj

j!

)α
can be expressed as ∞∑

j=0

cj
tj

j!

α

=

∞∑
n=0

dn
tn

n!
,

where

dn =
∑

n1+n2+···+nα=n

α∏
i=1

cni

(
n

n1, n2, . . . , nα

)
.

It follows that

∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!
=

∞∑
n=0


n∑
j=0

(
n

j

)
G(α)n−j(x;λ, a, b, c)dj

 tn

n!
.

Comparing the coefficients and using Equation (23) complete the proof of the
theorem. �

Remark 5.3. When α = 1, dj = cj .

The identities in the following theorem are derived using the relation in (13).

Theorem 5.4. The Apostol-type poly-Genocchi polynomials of higher order

G(k,α)n (x;λ, a, b, c) with parameters a, b, c satisfy the following explicit formulas:

(37) G(k,α)n (x;λ, a, b, c) =
∞∑
m=0

n∑
l=m

{
l
m

}(
n

l

)
(ln c)lG(k,α)n−l (−m ln c;λ, a, b)(x)(m),

(38) G(k,α)n (x;λ, a, b, c) =

∞∑
m=0

n∑
l=m

{
l
m

}(
n

l

)
(ln c)lG(k,α)n−l (λ, a, b)(x)m,

(39) G(k,α)n (x;λ, a, b)
n∑
l=0

n−l∑
m=0

(
n

l

){
l + s

s

}(n−l
m

)(
l+s
s

) G(k,α)n−l−m(λ, a, b)B(s)
m (x ln c;λ),

(40) G(k,α)n (x;λ, a, b) =
∞∑
m=0

(
n
m

)
(1− µ)s

s∑
j=0

(
s

j

)
(−µ)s−jG(k,α)n−m(j;λ, a, b)F (s)

m (x;µ),

where (x)(n) = x(x+ 1) · · · (x+n−1), (x)n = x(x−1) · · · (x−n+ 1), the rising

and falling factorials of x of degree n and F
(s)
n (x;µ), the Frobenius polynomials

of higher order [25], defined by(
1− µ
et − µ

)s
ext =

∞∑
n=0

F (s)
n (x;µ)

tn

n!
.
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Proof. The proof of relations (37)-(39) makes use of the definition of Stirling
numbers of the second kind in (34). Using the generalized Binomial Theorem,
(11) may be written as

∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!

=

(
Lik(1− (ab)−2t)

a−t + λbt

)α ∞∑
m=0

(
x+m− 1

m

)
(1− e−t ln c)m

=

∞∑
m=0

(x)(m) (et ln c − 1)m

m!

(
Lik(1− (ab)−2t)

a−t + λbt

)α
e−mt ln c

=

∞∑
m=0

(x)(m)

( ∞∑
n=0

{
n
m

}
(t ln c)n

n!

) ( ∞∑
n=0

G(k,α)n (−m ln c;λ, a, b)
tn

n!

)

=

∞∑
m=0

(x)(m)
∞∑
n=0

n∑
l=0

{
l
m

}
(ln c)l

tl

l!
G(k,α)n−l (−m ln c;λ, a, b)

tn−l

(n− l)!

=

∞∑
n=0

{ ∞∑
m=0

n∑
l=m

{
l
m

}(
n

l

)
(ln c)lG(k,α)n−l (−m ln c;λ, a, b)(x)(m)

}
tn

n!
.

Comparing coefficients completes the proof of (37). To prove (38), (11) we
write as

∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!

=

(
Lik(1− (ab)−2t)

a−t + λbt

)α ∞∑
m=0

(
x

m

)
(et ln c − 1)m

=

∞∑
m=0

(x)m
(et ln c − 1)m

m!

(
Lik(1− (ab)−2t)

a−t + λbt

)α
=

∞∑
m=0

(x)m

( ∞∑
n=0

{
n
m

}
(t ln c)n

n!

) ( ∞∑
n=0

G(k,α)n (0;λ, a, b)
tn

n!

)

=

∞∑
m=0

(x)m

∞∑
n=0

n∑
l=0

{
l
m

}
(ln c)l

tl

l!
G(k,α)n−l (λ, a, b)

tn−l

(n− l)!

=

∞∑
n=0

{ ∞∑
m=0

n∑
l=m

{
l
m

}(
n

l

)
(ln c)lG(k,α)n−l (λ, a, b)(x)m

}
tn

n!
.

Again, comparing coefficients completes the proof of (38). Using (30), (11)
may be expressed as

∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!
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=

(
(et − 1)s

s!

)(
tsext ln c

(et − 1)s

)(
Lik(1− (ab)−2t)

a−t + λbt

)α
s!

ts

=

( ∞∑
n=0

{
n+ s

s

}
tn+s

(n+ s)!

)( ∞∑
m=0

B(s)
m (x ln c;λ)

tm

m!

)( ∞∑
n=0

G(k,α)n (0;λ, a, b)
tm

m!

)
s!

ts

=

( ∞∑
n=0

{
n+ s

s

}
tn+s

(n+ s)!

)( ∞∑
n=0

n∑
m=0

(
n

m

)
B(s)
m (x ln c;λ)G(k,α)n−m(λ, a, b)

tn

n!

)
s!

ts

=

( ∞∑
n=0

n∑
l=0

{
l + s

s

}
tl+s

(l + s)!

n−l∑
m=0

(
n− l
m

)
B(s)
m (x ln c;λ)G(k,α)n−l−m(λ, a, b)

tn−l

(n− l)!

)
s!

ts
.

This can further be written as

∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!

=

( ∞∑
l=0

∞∑
n=l

n−l∑
m=0

{
l + s

s

}
l!s!

(l + s)!

(
n− l
m

)
B(s)
m (x ln c;λ)G(k,α)n−l−m(λ, a, b)

n!

(n− l)!l!
tn

n!

)

=

∞∑
n=0

(
n∑
l=0

n−l∑
m=0

(
n

l

){
l + s

s

}(n−l
m

)(
l+s
s

)B(s)
m (x ln c;λ)G(k,α)n−l−m(λ, a, b)

)
tn

n!
.

Comparing the coefficients of t
n

n! gives (39). To prove relation (40), express (11)
as

∞∑
n=0

G(k,α)n (x;λ, a, b, c)
tn

n!

=

(
(1− µ)s

(et − µ)s
ext ln c

)(
(et − µ)s

(1− µ)s

)(
Lik(1− (ab)−2t)

a−t + λbt

)α
=

1

(1− µ)s

( ∞∑
n=0

F (s)
n (x ln c;µ)

tn

n!

) s∑
j=0

(
s

j

)
(−µ)s−j

(
Lik(1− (ab)−2t)

a−t + λbt

)α
ejt


=

1

(1− µ)s

s∑
j=0

(
s

j

)
(−µ)s−j

( ∞∑
n=0

F (s)
n (x ln c;µ)

tn

n!

)( ∞∑
n=0

G(k,α)n (x;λ, a, b)
tn

n!

)

=
1

(1− µ)s

s∑
j=0

(
s

j

)
(−µ)s−j

∞∑
n=0

(
n∑

m=0

(
n

m

)
G(k,α)n−m(x;λ, a, b)F (s)

m (x ln c;µ)

)
tn

n!

=

∞∑
n=0

 n∑
m=0

(
n
m

)
(1− µ)s

s∑
j=0

(
s

j

)
(−µ)s−jG(k,α)n−m(x;λ, a, b)F (s)

m (x ln c;µ)

 tn

n!
.

Comparing the coefficients of tn

n! gives (40). �
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6. Symmetrized generalization

Definition. For m,n ≥ 0, the symmetrized generalization of multi poly-
Genocchi polynomials with parameters a, b and c is defined as follows:
(41)

S(m,α)n (x, y;λ, a, b, c) =

m∑
k=0

(
m

k

)
G(−k,α)n (x;λ, a, b, c)

(ln a+ ln b)n

(
y ln c+ α ln a

ln a+ ln b

)m−k
.

The following theorem contains the double generating function for

S(m,α)n (x, y;λ, a, b, c).

Theorem 6.1. For n,m ≥ 0, we have

(42)

∞∑
n=0

∞∑
m=0

S(m,α)n (x, y;λ, a, b, c)
tn

n!

um

m!
=
e(

y ln c+α ln a
ln a+ln b )ue(

x ln c+α ln a
ln a+ln b )te2t

(1 + λet)(e2t − e2t+u + eu)
.

Proof.
∞∑
n=0

∞∑
m=0

S(m,α)n (x, y;λ, a, b, c)
tn

n!

um

m!

=

∞∑
n=0

∞∑
m=0

m∑
k=0

G(−k,α)n (x;λ, a, b, c)

(ln a+ ln b)n

(
y ln c+ α ln a

ln a+ ln b

)m−k
tn

n!

um

k!(m− k)!

=

∞∑
n=0

∞∑
k=0

∞∑
m=k

G(−k,α)n (x;λ, a, b, c)

(ln a+ ln b)n

(
y ln c+ α ln a

ln a+ ln b

)m−k
tn

n!

um

k!(m− k)!

=

∞∑
n=0

∞∑
k=0

G(−k,α)n (x;λ, a, b, c)

(ln a+ ln b)n
tn

n!

uk

k!

∞∑
l=0

(
y ln c+ α ln a

ln a+ ln b

)l
ul

l!

= e(
y ln c+α ln a

ln a+ln b )u
∞∑
k=0

∞∑
n=0

G(−k,α)n (λ, a, b, c)

(ln a+ ln b)n
tn

n!

uk

k!
.

Applying (23) yields
∞∑
n=0

∞∑
m=0

S(m,α)n (x, y;λ, a, b, c)
tn

n!

um

m!

= e(
y ln c+α ln a

ln a+ln b )u
∞∑
k=0

∞∑
n=0

G(−k,α)n

(
x ln c+ α ln a

ln a+ ln b
;λ

)
tn

n!

uk

k!
.

Now, using (17), we obtain
∞∑
n=0

∞∑
m=0

S(m,α)n (x, y;λ, a, b, c)
tn

n!

um

m!

= e(
y ln c+α ln a

ln a+ln b )ue(
x ln c+α ln a

ln a+ln b )t
∞∑
k=0

Li(−k)(1− e−2t)
1 + λet

uk

k!
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=
e(

y ln c+α ln a
ln a+ln b )ue(

x ln c+α ln a
ln a+ln b )t

1 + λet

∞∑
k=0

Li(−k)(1− e
−2t)

uk

k!
.

Employing the definition of polylogarithm yields
∞∑
n=0

∞∑
m=0

S(m,α)n (x, y;λ, a, b, c)
tn

n!

um

m!

=
e(

y ln c+α ln a
ln a+ln b )ue(

x ln c+α ln a
ln a+ln b )t

1 + λet

∞∑
k=0

∞∑
m=0

(
1− e−2t

)m
m−k

uk

k!

=
e(

y ln c+α ln a
ln a+ln b )ue(

x ln c+α ln a
ln a+ln b )t

(1 + λet)(1− ((1− e−2t)eu))

=
e(

y ln c+α ln a
ln a+ln b )ue(

x ln c+α ln a
ln a+ln b )te2t

(1 + λet)(e2t − e2t+u + eu)
.

�

The Apostol-type poly-Genocchi polynomials discussed above will be re-
ferred to as type 1 Apostol-poly-Genocchi polynomials. Type 2 of these poly-
nomials are introduced in the next section.

7. Type 2 higher order Apostol-poly-Genocchi polynomials

Another variation of Genocchi polynomials is defined using the polyexpo-
nential function [21],

(43) ek(z) =

∞∑
m=1

zm

(m− 1)!mk
.

Note that when k = 1, e1(z) = ez − 1. Hence, if z = log(1 + 2t),

e1(z) = e1(log(1 + 2t)) = elog(1+2t) − 1 = 2t.

Definition. The type 2 Apostol-poly-Genocchi polynomials of higher order

with parameters a, b and c, denoted by G(k)n,2(x;λ, a, b, c), are defined as follows:

(44)
∞∑
n=0

G(k,α)n,2 (x;λ, a, b, c)
tn

n!
=

(
ek(log(1 + 2t ln ab))

a−t + λbt

)α
cxt, |t| <

√
(lnλ)2 + π2

| ln a+ ln b|
.

The following are special cases of G(k,α)n,2 (x;λ, a, b, c):

1. When x = 0, we use G(k,α)n,2 (λ, a, b) to denote G(k,α)n,2 (0;λ, a, b, c), the type
2 Apostol-poly-Genocchi numbers with parameters a, b. That is,

(45)

∞∑
n=0

G(k,α)n,2 (λ, a, b)
tn

n!
=

(
ek(log(1 + 2t ln ab))

a−t + λbt

)α
.

2. When a = 1, b = c = e, (44) yields

(46)

∞∑
n=0

G(k,α)n,2 (x;λ)
tn

n!
=

(
ek(log(1 + 2t))

1 + λet

)α
ext,
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where the polynomials G(k,α)n,2 (x;λ) = G(k,α)n,2 (x;λ, 1, e, e) are called the type 2
Apostol-poly-Genocchi polynomials.

3. When k = 1, (44) gives

(47)

∞∑
n=0

G(α)n,2 (x;λ, a, b, c)
tn

n!
=

(
2t ln ab

a−t + λbt

)α
cxt,

where the polynomials G(α)n,2 (x;λ, a, b, c) = G(1,α)n,2 (x;λ, a, b, c) are called the type
2 Apostol-Genocchi polynomials with parameters a, b and c, which are related
to the type 1 Apostol-Genocchi polynomials with parameters a, b and c as
follows:

G(1,α)n,2 (x;λ, a, b, c) =
G(1,α)n (x;λ, a, b, c)

ln ab
.

4. When a = 1, b = c = e, (47) yields

(48)

∞∑
n=0

G(1,α)n,2 (x;λ, 1, e, e)
tn

n!
=

(
2t

1 + λet

)α
ext,

where the polynomials G(1,α)n,2 (x;λ, 1, e, e) = G(α)n (x;λ) are the type 2 Apostol-

Genocchi polynomials in (2). Furthermore, when α = 1,

(49)

∞∑
n=0

G(1)n,2(x;λ)
tn

n!
=

2t

1 + λet
ext,

where Gn,2(x;λ) = G(1)n,2(x;λ), the type 2 Apostol-Genocchi polynomials.

Now rewrite (44) as follows:

∞∑
n=0

G(k,α)n,2 (x;λ, a, b, c)
tn

n!
=

(
ek(log(1 + 2t ln ab))

a−t(1 + λ(ab)t)

)α
ext ln c

= e
x ln c+α ln a

ln ab t ln ab

(
ek(log(1 + 2t ln ab))

1 + λet ln ab

)
=

∞∑
n=0

(ln a+ ln b)nG(k,α)n,2

(
x ln c+ α ln a

ln a+ ln b
;λ

)
tn

n!
,

and comparing the coefficients yield the following theorem.

Theorem 7.1. The type 2 Apostol-poly-Genocchi polynomials with parameters
a, b and c satisfy the relation

(50) G(k,α)n,2 (x;λ, a, b, c) = (ln a+ ln b)nG(k,α)n,2

(
x ln c+ α ln a

ln a+ ln b
;λ

)
.

When k = 1, (50) reduces to the following relation

(51) G(α)n,2 (x;λ, a, b, c) = (ln a+ ln b)n−jG(α)n,2

(
x ln c+ α ln a

ln a+ ln b
;λ

)
.
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The next theorem contains an identity that relates the type 2 Apostol-poly-
Genocchi polynomials of higher order with parameters a, b and c to Stirling

numbers of the first kind
[
n

m

]
defined by

(52)

∞∑
n=m

[
n

m

]
tn

n!
=

(log(1 + t))m

m!
.

Theorem 7.2. The type 2 Apostol-poly-Genocchi polynomials of higher order
with parameters a, b and c satisfy the relation

(53) G(k,α)n,2 (x;λ, a, b, c) =

n∑
j=0

(
n

j

)
(ln a+ ln b)n−jG(α)n−j,2

(
x ln c+ α ln a

ln a+ ln b
;λ

)
dj ,

where

dj =
∑

n1+n2+···+nα=j

α∏
i=1

cni

(
j

n1, n2, . . . , nα

)
and cj =

j∑
m=0

(2 ln ab)j
[
j + 1

m+ 1

]
(j + 1)(m+ 1)k−1

.

Proof. Applying the definition of polyexponential function (43), (44) may be
written as

∞∑
n=0

G(k,α)n,2 (x;λ, a, b, c)
tn

n!

=
cxt

(a−t + λbt)α

( ∞∑
m=1

(log(1 + 2t ln ab))m

(m− 1)!mk

)α

=
cxt

(a−t + λbt)α

( ∞∑
m=0

(log(1 + 2t ln ab))m+1

m!(m+ 1)k

)α

=
cxt

(a−t + λbt)α

( ∞∑
m=0

1

(m+ 1)k−1
log(1 + 2t ln ab))m+1

(m+ 1)!

)α
.

This can further be written, using (52), as follows:

∞∑
n=0

G(k,α)n,2 (x;λ, a, b, c)
tn

n!

=
cxt

(a−t + λbt)α

 ∞∑
m=0

1

(m+ 1)k−1

∞∑
j=m+1

[
j

m+ 1

]
(2t ln ab)j

j!

α

= cxt
(

2t ln ab

a−t + λbt

)α ∞∑
m=0

∞∑
j=m

[
j + 1

m+ 1

]
(j + 1)(m+ 1)k−1

(2t ln ab)j

j!


α

.
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Applying (47) yields

∞∑
n=0

G(k,α)n,2 (x;λ, a, b, c)
tn

n!
=

( ∞∑
n=0

G(α)n,2 (x;λ, a, b, c)
tn

n!

) ∞∑
j=0

cj
tj

j!

α

,(54)

where

cj =

j∑
m=0

(2 ln ab)j
[
j + 1

m+ 1

]
(j + 1)(m+ 1)k−1

.

Note that, using (35), Equation (54) can be expressed as

∞∑
n=0

G(k,α)n,2 (x;λ, a, b, c)
tn

n!
=

∞∑
n=0


n∑
j=0

(
n

j

)
G(α)n−j,2(x;λ, a, b, c)dj

 tn

n!
,

where

dj =
∑

n1+n2+···+nα=j

α∏
i=1

cni

(
j

n1, n2, . . . , nα

)
.

This immediately gives (53) by comparing the coefficients and using Equation
(50). �

The next theorem shows the relationship between the type 2 Apostol-poly-
Genocchi polynomials of higher order with parameters a, b and c and the type
2 Apostol-poly-Bernoulli polynomials defined as

(55)

(
ek(log(1 + t))

λet − 1

)α
ext =

∞∑
n=0

B(k,α)n,2 (x;λ)
xn

n!
.

These polynomials and those in (28) are generalizations of Bernoulli-type poly-
nomials.

Theorem 7.3. The type 2 Apostol-poly-Genocchi polynomials of higher order
with parameters a, b, c satisfy the relation

G(k)n,2(x;λ, a, b, c)(56)

=
α∑
j=0

(
α

j

)
(−1)jλα−jB(k,α)n,2

(
(α− j) ln b+ x ln c+ (2α− j) ln a

2(ln a+ ln b)
;λ2
)

2n(ln ab)n.

Proof. Rewrite Equation (44) as
∞∑
n=0

G(k,α)n,2 (x;λ, a, b, c)
tn

n!

=

(
ek(log(1 + 2t ln ab))

a−t + λbt

)α
ext ln c

=

(
ek(log(1 + 2t ln ab))

a−2t − (λbt)2

)α
(a−t − λbt)αext ln c
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=

(
ek(log(1 + 2t ln ab))

(1− (λ(ab)t)2)

)α
(e−t ln a − λet ln b)αext ln ce2tα ln a

=

(
ek(log(1 + 2t ln ab))

−(λ2e2t ln(ab) − 1)

)α (
et(− ln a+(x ln c/α)+2 ln a) − λet(ln b+(x ln c/α)+2 ln a)

)α
.

Applying the Binomial Theorem yields

∞∑
n=0

G(k,α)n,2 (x;λ, a, b, c)
tn

n!

=

(
ek(log(1 + 2t ln ab))

−(λ2e2t ln(ab) − 1)

)α α∑
j=0

(
α

j

)
(−λ)α−jejt(ln a+(x ln c/α))e(α−j)t(ln b+(x ln c/α)+2 ln a)

=
α∑
j=0

(
α

j

)
(−1)jλα−j

(
ek(log(1 + 2t ln ab))

λ2e2t ln(ab) − 1

)α
e[((α−j) ln b+α(x ln c/α)+(2α−j) ln a)/2 ln ab](2t ln ab).

Using the definition of type 2 Apostol-poly-Bernoulli polynomials of higher
order in (55), we have

∞∑
n=0

G(k,α)n,2 (x;λ, a, b, c)
tn

n!

=
α∑
j=0

(
α

j

)
(−1)jλα−j

{ ∞∑
n=0

B(k,α)n,2

(
(α− j) ln b+ x ln c+ (2α− j) ln a

2(ln a+ ln b)
;λ2
)

2n(ln ab)n
tn

n!

}

=
∞∑
n=0


α∑
j=0

(
α

j

)
(−1)jλα−jB(k,α)n,2

(
(α− j) ln b+ x ln c+ (2α− j) ln a

2(ln a+ ln b)
;λ2
)

2n(ln ab)n

 tn

n!
.

Comparing the coefficients of tn

n! yields (56). �

Remark 7.4. It is left to the reader to prove the following identities. The proof
can be done following the proof of the corollary responding identities in Sections
3, 4 and 5 for type 1 Apostol-poly-Genocchi polynomials of higher order with
parameters a, b and c:

G(k,α)n,2 (x;λ, a, b, c) =

n∑
i=0

(
n

i

)
(ln c)n−iG(k,α)i,2 (λ, a, b)xn−i,

G(k,α)n,2 (x+ 1;λ, a, b, c) =

n∑
r=0

(
n

r

)
(ln c)rG(k,α)n−r,2(x;λ, a, b, c),

d

dx
G(k,α)n+1,2(x;λ, a, b, c) = (n+ 1)(ln c)G(k,α)n,2 (x;λ, a, b, c),

G(k,α)n,2 (x+ y;λ, a, b, c) =

∞∑
i=0

(
n

i

)
(ln c)n−iG(k,α)i,2 (x;λ, a, b, c)yn−i,

G(k,α)n,2 (x;λ, a, b, c) =

∞∑
m=0

n∑
l=m

{
l
m

}(
n

l

)
(ln c)lG(k,α)n−l,2(−m ln c;λ, a, b)(x)(m),
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G(k,α)n,2 (x;λ, a, b, c) =

∞∑
m=0

n∑
l=m

{
l
m

}(
n

l

)
(ln c)lG(k,α)n−l,2(λ, a, b)(x)m,

G(k,α)n,2 (x;λ, a, b) =

n∑
l=0

n−l∑
m=0

(
n

l

){
l + s

s

}(n−l
m

)(
l+s
s

) G(k,α)n−l−m(λ, a, b)B(s)
m (x ln c;λ),

G(k,α)n,2 (x;λ, a, b) =

∞∑
m=0

(
n
m

)
(1− µ)s

s∑
j=0

(
s

j

)
(−µ)s−jG(k,α)n−m,2(j;λ, a, b)F (s)

m (x;µ).

8. Conclusion

Using polylogarithm Apostol-type polynomials of higher order with parame-
ters a, b and c and a variation of poly-Genocchi polynomials, called the Apostol-
type poly-Genocchi polynomials of higher order, also known as type 1 Apostol-
poly-Genocchi polynomials of higher order were introduced. Some interesting
properties and identities of these polynomials parallel to those of the poly-Euler
polynomials and poly-Bernoulli polynomials were proved. Using a differential
identity, the type 1 Apostol-poly-Genocchi polynomials were classified as Ap-
pell polynomials, which, consequently, gave some interesting relations. More-
over, these type 1 Apostol-poly-Genocchi polynomials of higher order were
expressed in terms of Stirling numbers of the second kind and Apostol-type
poly-Bernoulli polynomials of higher order. Furthermore, the symmetrized
generalization of the type 1 Apostol-poly-Genocchi polynomials of higher or-
der was introduced and a double generating function was established. Type 2
Apostol-poly-Genocchi polynomials of higher order with parameters a, b and c
were also defined. Several identities were established, two of which showed the
connections of these polynomials with Stirling numbers of the first kind and the
type 2 Apostol-type poly-Bernoulli polynomials. One may try to investigate
the two types of Apostol-poly-Bernoulli polynomials of higher order defined in
(28) and (55), by establishing more properties and extending them to a more
general form by adding three more parameters a, b and c.
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