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A NEW CLASS OF GENERALIZED POLYNOMIALS

ASSOCIATED WITH HERMITE-BERNOULLI POLYNOMIALS

MOULOUD GOUBI

Abstract. In this paper, we introduce and investigate a new class of

generalized polynomials associated with Hermite-Bernoulli polynomials of
higher order. This generalization is a unification formula of Bernoulli num-

bers, Bernoulli polynomials, Hermite-Bernoulli polynomials of Dattoli, gen-

eralized Hermite-Bernoulli polynomials for two variables of order α and new
other families of polynomials depending on any generating function f .
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1. Introduction

The Hermite polynomials Hn(x) (see [1]) are defined by

Hn(x) = n!

bn2 c∑
r=0

(−1)r(2x)n−2r

r!(n− 2r)!
. (1)

We recall that the two variables Hermite Kampé de Fériet polynomials Hn(x, y)
(see [2]) sometimes called the higher order Hermite polynomials (see [10]) are
given by

Hn(x, y) = n!

bn2 c∑
r=0

yrxn−2r

r!(n− 2r)!
(2)

and generated by the function

ext+yt
2

=
∑
n≥0

Hn(x, y)
tn

n!
. (3)

C.S. Ryoo (see [14]) studied differential equations arising from the generating
function (3) and gave explicit identities for these polynomials. According to the
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identities (1) and (2); the polynomials Hn(x) and Hn(x, y) are connected by the
following relationship

Hn(2x,−1) = Hn(x).

For all real number c > 0, Hn(x, y) can be extended naturally to polynomials
Hn(x, y; c) by considering the generating function

cxt+yt
2

=
∑
n≥0

Hn(x, y, c)
tn

n!
.

One remarks that

Hn(x, y; c) = Hn (x ln c, y ln c) .

And for x = 0 one obtains

cyt
2

=
∑
n≥0

(ln c)nyn
t2n

n!
.

Furthermore

Hn(0, y; c) =

{
(2k)!
k! (ln c)kyk , if n = 2k,

0 , otherwise.
(4)

It is well-known that the generalized Bernoulli polynomials B
(α)
n (x) of order

α ∈ C\ {0} are defined by the generating function(
t

et − 1

)α
ext =

∑
n≥0

B(α)
n (x)

tn

n!
. (5)

The generalized Hermite-Bernoulli polynomials HB
(α)
n (x, y) for two variables of

order α which were introduced and investigated by Pathan [12], are given by(
t

et − 1

)α
ext+yt

2

=
∑
n≥0

HB
(α)
n (x, y)

tn

n!
. (6)

These polynomials are a generalization of Bernoulli numbers, Bernoulli polyno-
mials, Hermite polynomials and Hermite-Bernoulli polynomials introduced and
studied by Dattoli and al. [4]; which are given by the generating function(

t

et − 1

)
ext+yt

2

=
∑
n≥0

HBn(x, y)
tn

n!
(7)

different of degenerate Hermite-Bernoulli polynomials studied by H. Haroon and
A. K. Waseem (see [9]), and Hermite-Bernoulli Polynomials attached to a Dirich-
let character studied by A. Serkan and al. in [15].

Otherwise let the generating function f(t) =
∑
n≥0 bn

tn

n! , with f(0) = b0 6= 0.

Then F (t) = t
f(t)−b0 is a generating function too and generates numbers B

(f)
n
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i.e,

F (t) =
∑
n≥0

B(f)
n

tn

n!
. (8)

But we have

(f(t)− b0)F (t) = t

and then by using the Cauchy product (for more details about this product we

refer to [7]) we conclude that B
(f)
0 = b−1

1 and

n−1∑
k=0

(
n

k

)
bn−kB

(f)
k = 0, n ≥ 2. (9)

For b0 = 1; −F (t)/t can be seen as a special case of the notion of generating
function of the function f (x = 1 and |f(t)| < 1) introduced in Definition 3.1

and Example 3.1 of our recent work [8]. Since B
(f)
0 6= 0; Fα(t) is a generating

function too, and generates numbers B
(f,α)
n . Then we have(

t

f(t)− b0

)α
=
∑
n≥0

B(f,α)
n

tn

n!
.

We did everything to introduce a new generalization of Hermite-Bernoulli
polynomials and other related polynomials.

Definition 1.1. The generalized Hermite-Bernoulli polynomials HB
(f,α)
n (x, y; c)

depending on real number c > 0 and the function f are given in means of the
generating function(

t

f(t)− b0

)α
cxt+yt

2

=
∑
n≥0

HB
(f,α)
n (x, y; c)

tn

n!
. (10)

The family of polynomials HB
(f,α)
n (x, y; c) includes the family of generalized

Bernoulli polynomials introduced by Pathan and Khan (see [13, Definition 2.2
p.56]) which are defined in means of generating function(

t

at − bt

)α
cxt+yt

2

=
∑
n≥0

B(α)
n (x, y; a, b, c)

tn

n!
, a 6= b, c > 0

just taking f(t) = at − bt + 1.

In this work, we give the explicit formula of HB
(f,α)
n (x, y; c) and apply the

result to some special case of the function f . Which goes alone to obtain an
improvement of [13, Theorem 2.7, p. 57] and other important results.
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2. Main results

For any complex number α the extended binomial coefficient is given by(
α

k

)
=

(α)k
k!

, with (α)k = α (α− 1) · · · (α− k + 1) .

If α ∈ N we obtain the standard binomial coefficient(
α

k

)
=

{ α!
k!(α−k)! , if k ≤ α,

0 , otherwise.

And the multinomial coefficients of order n are defined by(
k

k1 · · · kn

)
=

k!

k1! · · · kn!

where k1 + · · ·+ kn = k. Which is identical with binomial coefficient for n = 2.

Theorem 2.1. Let α ∈ C\ {0} and the set

πn(k) = {(k1, · · · , kn) ∈ Nn \ k1 + · · ·+ kn = k, k1 + 2k2 + · · ·+ nkn = n}
then we have

HB
(f,α)
n (x, y; c)

n!

=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
−α
k

)(
k

k1 · · · kn

)
b−α−k1 (11)

×
n∏
i=1

 i∑
j=0

bj+1Hi−j

(
−x ln c

α ,−y ln c
α

)
(j + 1)!(i− j)!

ki

.

Corollary 2.2.

B
(f,α)
n

n!
=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
−α
k

)(
k

k1 · · · kn

)
b−α−k1

n∏
i=1

(
bi+1

(i+ 1)!

)ki
. (12)

B
(f)
n

n!
=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(−1)k
(

k

k1 · · · kn

)
b−1−k
1

n∏
i=1

(
bi+1

(i+ 1)!

)ki
. (13)

2.1. Proof of main results. Let h(t) =
∑
n≥0 ant

n be a generating function

with a0 6= 0. Then hα(t) is a generating function too. Denoting h∆(n, α) (see
[11]) the numbers generated by hα(t) then their explicit formula is given by the
following lemma.

Lemma 2.3. We have h∆(0, α) = aα0 and

h∆(n, α) =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
α

k

)(
k

k1 · · · kn

)
ak11 · · · aknn aα−k0 , n ≥ 1. (14)
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Proof. We consider the auxiliary function g(t) = tα then g ◦ h(t) = hα(t) is a
generating function. Since

hα(t) =
∑
n≥0

h∆(n, α)tn

we deduce that
dnhα(t)

dtn
|t=0 = h∆(n, α)n!.

But from the Faà di Bruno formula (see [5]) we have (g ◦ h)
(0)

(t) = g ◦ h(t) and

(g ◦ h)
(n)

(t)

=
n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

n!

k1! · · · kn!

(
g(k) ◦ h(t)

) n∏
i=1

(
h(i)(t)

i!

)ki
, n ≥ 1.

Furthermore

(g ◦ h)
(n)

(t)

=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

n!

k1! · · · kn!
(α)kh

α−k(t)

n∏
i=1

(
h(i)(t)

i!

)ki
, n ≥ 1.

which means that

(g ◦ h)
(n) |t=0 =

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

n!

k1! · · · kn!
(α)ka

α−k
0

n∏
i=1

ak1i , n ≥ 1.

Finally h∆(0, α) = (g ◦ h)
(0)

(0) = aα0 and

h∆(n, α) =

n∑
k=0

1

k!

∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

)
(α)ka

α−k
0 ak11 · · · aknn , n ≥ 1.

�

2.2. Proof of Theorem.2.1. For α ∈ C\ {0} we have(
t

f(t)− b0

)α
cxt+yt

2

=

(
f(t)− b0

t
e−

x ln c
α t− y ln c

α t2
)−α

.

But
f(t)− b0

t
=
∑
n≥0

bn+1
tn

(n+ 1)!

and

e−
x ln c
α t− y ln c

α t2 =
∑
n≥0

Hn

(
−x ln c

α
,−y ln c

α

)
tn

n!
.

The Cauchy product of the last two functions conducts to

f(t)− b0
t

e−
x ln c
α t− y ln c

α t2 =
∑
n≥0

n∑
k=0

bk+1Hn−k

(
−x ln c

α ,−y ln c
α

)
(k + 1)!(n− k)!

tn.
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Let us h(t) = f(t)−b0
t e−

x ln c
α t− y ln c

α t2 , then we remark that a0 = b1 6= 0 and for
n ≥ 1,

an =

n∑
k=0

bk+1Hn−k

(
−x ln c

α ,−y ln c
α

)
(k + 1)(n− k)!

.

Substituting these values in the identity (14) Lemma 2.3 we obtain the identity
(11) Theorem 2.1.

2.3. Proof of Corollary 2.2. One takes x = y = 0 in the identity (11) Theo-
rem 2.1 to deduce the identity (12) Corollary 2.2.

For the second identity (16) Corollary 2.2 we take x = y = 0 and α = 1 in the
identity (11) Theorem 2.1 and we use the fact that

(−1
k

)
= (−1)k to conclude.

3. Applications

3.1. Exponential function. In the special case f(t) = et and c = e, the
sequence bn is constant and equal 1. We have already proved the following
formula for generalized Hermite-Bernoulli polynomials (the proof is left as an
exercise).

Theorem 3.1.

HB
(α)
n (x,y)
n!

=
∑n
k=0

∑
(k1,··· ,kn)∈πn(k)

(−α
k

)(
k

k1···kn

)∏n
i=1

(∑i
j=0

Hi−j(− xα ,−
y
α )

(j+1)!(i−j)!

)ki
. (15)

This identity conducts directly to explicit formula of well-known Bernoulli
numbers Bαn and Bn.

Corollary 3.2.

B
(α)
n

n!
=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
−α
k

)(
k

k1 · · · kn

) n∏
i=1

(
1

(i+ 1)!

)ki
. (16)

Bn
n!

=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(−1)k
(

k

k1 · · · kn

) n∏
i=1

(
1

(i+ 1)!

)ki
. (17)

The proof consists to take x = y = 0 and remark that Hi−j(0, 0) = 1 for j = i
and zero otherwise. The identity (17) is an advanced expression of Bn which
help us to compute directly the Bernoulli numbers without using the well-known
recurrence formula of these numbers.
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3.2. Geometric function. We consider for example the generating function

f(t) =
1

1− t
=
∑
n≥0

tn, |t| < 1

then f(t) − 1 = t
1−t furthermore t

f(t)−1 = 1 − t which means that B
(f)
0 = 1,

B
(f)
1 = −1 and B

(f)
n = 0 for n ≥ 1. In means of the identity (14) Lemma 2.3 we

conclude that (
t

f(t)− 1

)α
= (1− t)α =

∑
n≥0

(
α

n

)
(−1)ntn.

Furthermore by using Cauchy product [7, 6] we obtain(
t

f(t)− 1

)α
cxt+yt

2

=
∑
n≥0

n∑
k=0

(
α

k

)
(−1)kHn−k (x ln c, y ln c) tn

and then

HB
(f,α)
n (x, y; c)

n!
=

n∑
k=0

(
α

k

)
(−1)kHn−k (x ln c, y ln c) .

According to the identity (11) Theorem 2.1, we have already proved the following
theorem.

Theorem 3.3.
n∑
k=0

(
α

k

)
(−1)kHn−k (x ln c, y ln c)

=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
−α
k

)(
k

k1 · · · kn

)
(18)

×
n∏
i=1

 i∑
j=0

Hi−j

(
−x ln c

α ,−y ln c
α

)
(i− j)!

ki

.

Furthermore for c = e we obtain the following result

Corollary 3.4.

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
−α
k

)(
k

k1 · · · kn

) n∏
i=1

 i∑
j=0

Hi−j
(
− x
α ,−

y
α

)
(i− j)!

ki

=

n∑
k=0

(
α

k

)
(−1)kHn−k (x, y) . (19)

and if x = y = 0 we get
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Corollary 3.5.(
α

n

)
= (−1)n

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
−α
k

)(
k

k1 · · · kn

)
. (20)

This identity shows that
(
α
k

)
is a linear combination of numbers

(−α
k

)
for

1 ≤ k ≤ n. And gives for example
(−1
n

)
= (−1)n. Furthermore if n ≥ 2 we obtain

the identity

n∑
k=0

(−1)k

 ∑
(k1,··· ,kn)∈πn(k)

(
k

k1 · · · kn

) = 0.

4. Generalized Bernoulli polynomials

The generalized Bernoulli polynomials B
(α)
n (x, y; a, b, c) introduced by MA.

Pathan and WA. Khan (see [13]) admit the following explicit formula

Theorem 4.1.

B
(α)
n (x, y; a, b, c)

n!

=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
−α
k

)(
k

k1 · · · kn

)(
ln
a

b

)−α−k

×
n∏
i=1

 i∑
j=0

(
(ln a)j+1 − (ln b)j+1

)
Hi−j

(
−x ln c

α ,−y ln c
α

)
(j + 1)!(i− j)!

ki

. (21)

Proof. To get the proof, just take f(t) = at − bt + 1 and then

f(t) = 1 +
∑
n≥1

((ln a)n − (ln b)n)
tn

n!

thus b0 = 1 and bn = (ln a)n− (ln b)n for n ≥ 0. Furthermore B
(α)
n (x, y; a, b, c) =

B
(f,α)
n (x, y; c). �

We have

i∑
j=0

(
(ln a)j+1 − (ln b)j+1

)
Hi−j

(
−x ln c

α ,−y ln c
α

)
(j + 1)!(i− j)!

=

i∑
j=0

(
(ln a)i−j+1 − (ln b)i−j+1

)
Hj

(
−x ln c

α ,−y ln c
α

)
(i− j + 1)!j!
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, then as a consequence of the identity (21) Theorem 4.1 and the expression (4)
of Hn(0, y; c) we obtain

B
(α)
n (0, y; a, b, c)

n!

=

n∑
k=0

∑
(k1,··· ,kn)∈πn(k)

(
−α
k

)(
k

k1 · · · kn

)(
ln
a

b

)−α−k

×
n∏
i=1

b i2c∑
j=0

(
(ln a)i−2j+1 − (ln b)i−2j+1

)
(ln c)j(−y)j

(i− 2j + 1)!j!αj


ki

.

which is an improvement of the identity

B(α)
n (0, y; a, b, c) =

bn2 c∑
k=0

n!

k!(n− 2k)!
(ln c)kB

(α)
n−2k(a, b)yk

showed in the work [13].

5. Conclusion

In this work we introduced a new family of polynomials attached to a any gen-
erating function f not vanishing on zero. This family is a unification formula of
Bernoulli numbers, Bernoulli polynomials, Hermite-Bernoulli polynomials, gen-
eralized Hermite-Bernoulli polynomials for two variables of higher order.

In section 2, we studied the family HB
(f,α)
n (x, y; c) and stated its explicit for-

mula (Theorem 2.1). Furthermore explicit formula for numbers B
(f,α)
n and B

(f)
n

are deduced (Corollary 2.2).

In section 3 we apply this result to some special cases in order to give a

closed formula for the polynomials HB
(α)
n (x, y). Which goes alone to give a new

reformulation of Bernoulli numbers Bn without using their recurrence formula
(Corollary 3.2); based on a special partition of the number n.

Finally, in the last section we revisit polynomials B
(α)
n (x, y; a, b, c) introduced

by MA. Pathan and WA. Khan and get their explicit formula; which includes
an improvement of [13, Theorem 2.7, p.57].
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