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A NOTE ON MIXED POLYNOMIALS AND NUMBERS

Mohd Ghayasuddin∗ and Nabiullah Khan

Abstract. The main object of this article is to propose a unified exten-
sion of Bernoulli, Euler and Genocchi polynomials by means of a new

family of mixed polynomials whose generating function is given in terms

of generalized Bessel function. We also discuss here some fundamental
properties of our introduced mixed polynomials by making use of the se-

ries arrangement technique. Furthermore, some conclusions of our present
study are also pointed out in the last section.

1. Introduction

Throughout in this paper, let N, R and C be the sets of natural numbers,
real numbers and complex numbers, respectively, and let

N0 := {0, 1, 2, 3, ...} = N ∪ {0}.
The generating functions of the Bernoulli polynomials, Euler polynomials

and Genocchi polynomials are defined, respectively, by (see, [24], [26], [15])

(1)
t

et − 1
eut =

∞∑
n=0

Bn(u)
tn

n!
(|t| < 2π),

(2)
2

et + 1
eut =

∞∑
n=0

En(u)
tn

n!
(|t| < π)

and

(3)
2t

et + 1
eut =

∞∑
n=0

Gn(u)
tn

n!
(|t| < π).

Obviously, for u = 0, we have

Bn(0) = Bn, En(0) = En, and Gn(0) = Gn,
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where Bn, En and Gn are the well known Bernoulli, Euler and Genocchi num-
bers, respectively.

These polynomials play a crucial role in several parts of analysis, calculus of
finite differences and various other fields of mathematical analysis, for example,
in statistics, numerical analysis, combinatorics etc. A useful generalization of
the Bernoulli, Euler and Genocchi polynomials are described, respectively, by
means of the following generating functions (see, [16]–[21]):

(4)

(
t

et − 1

)p

eut =

∞∑
n=0

B(p)
n (u)

tn

n!
(|t| < 2π, 1p := 1),

(5)

(
2

et + 1

)p

eut =

∞∑
n=0

E(p)
n (u)

tn

n!
(|t| < π, 1p := 1)

and

(6)

(
2t

et + 1

)p

eut =

∞∑
n=0

G(p)
n (u)

tn

n!
(|t| < π, 1p := 1).

Due to notable applications in mathematical analysis, a unified treatment
of such polynomials introduced from time to time by many researchers (see,
for example, [1], [2], [3], [6], [14], [8]–[23], [25] and the references cited therein).
The main motive of the present investigation is to propose a new extension
of Bernoulli, Euler and Genocchi polynomials by means of a single generating
function involving generalized Bessel function of the first kind wb

ν,c(t).

The generalized Bessel function of the first kind wb
ν,c(t) is defined as follows

(see, [4], see also [7]):

(7) wb
ν,c(t) =

∞∑
k=0

(−c)k (t/2)ν+2k

k! Γ(ν + k + 1+b
2 )

,

where b, c, ν ∈ C with R(ν) > −1 and wb
ν,c(0) = 0.

Furthermore, for some particular values of the parameters, the generalized
Bessel function wb

ν,c(t) reduces to the under mentioned hyperbolic sine and
cosine functions (see, [4], see also [7]):

(i) On setting ν = 1− b
2 and replacing c by −c2 in (7), we get

(8) wb
1− b

2 , −c2
(t) =

(
2

t

) b
2 sinh ct√

π
.

(ii) Further, on setting ν = − b
2 and replacing c by −c2 in (7), we have

(9) wb
− b

2 , −c2
(t) =

(
2

t

) b
2 cosh ct√

π
.
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Here, sinh t and cosh t denotes the hyperbolic sine and cosine functions, which
can be expressed in terms of exponential functions as follows:

(10) sinh t =
et − e−t

2

and

(11) cosh t =
et + e−t

2
.

2. Mixed polynomials and numbers

In this section, we propose a unified extension of Bernoulli, Euler and
Genocchi polynomials (numbers) by means of the mixed polynomials whose
generating function is given in terms of the generalized Bessel function of the
first kind wb

ν,c(t).
Let

(12) Gb,c,d
ν,a (t) =

2b−dta−
b
2 e−

t
2

√
π wb

ν,c(
t
2 )

,

where a, d ∈ N0, b, c, ν ∈ C and wb
ν,c(t) is the generalized Bessel function of the

first kind defined by (7).

Definition 2.1. The new mixed polynomials Φa,b,c,d
n,ν (u) for nonnegative integer

n are defined by

(13) Gb,c,d
ν,a (t)eut =

∞∑
n=0

Φa,b,c,d
n,ν (u)

tn

n!
,

where Gb,c,d
ν,a (t) is given in (12).

If we assign some particular values to the parameters of our mixed polyno-
mials Φa,b,c,d

n,ν (u) then these polynomials easily reduces to the Bernoulli polyno-
mials Bn(u), Euler polynomials En(u) and Genocchi polynomials Gn(u). The
special cases of (13) are given as follows:

Case-I (Connection with Bernoulli polynomials). Setting ν = 1 − b
2 ,

c = −1, a = d = 1 in (13) and then by using (12) and (8), we arrive at

t e−
t
2

2 sinh t
2

eut =

∞∑
n=0

Φ1,b,−1,1

n,1− b
2

(u)
tn

n!
,

or equivalently,

t

et − 1
eut =

∞∑
n=0

Φ1,b,−1,1

n,1− b
2

(u)
tn

n!
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∞∑
n=0

Bn(u)
tn

n!
=

∞∑
n=0

Φ1,b,−1,1

n,1− b
2

(u)
tn

n!
,

where Bn(u) are the Bernoulli polynomials defined by (1).

Hence, we have

(14) Φ1,b,−1,1

n,1− b
2

(u) = Bn(u).

Case-II (Connection with Euler polynomials). Further, on setting ν =
− b

2 , c = −1, a = d = 0 in (13) and then by using (12) and (9), we get

e−
t
2

cosh t
2

eut =

∞∑
n=0

Φ0,b,−1,0

n,− b
2

(u)
tn

n!
,

or equivalently,

2

et + 1
eut =

∞∑
n=0

Φ0,b,−1,0

n,− b
2

(u)
tn

n!

∞∑
n=0

En(u)
tn

n!
=

∞∑
n=0

Φ0,b,−1,0

n,− b
2

(u)
tn

n!
,

where En(u) are the Euler polynomials given in (2).

Hence, we get

(15) Φ0,b,−1,0

n,− b
2

(u) = En(u).

Case-III (Connection with Genocchi polynomials). Taking ν = − b
2 ,

c = −1, a = 1, d = 0 in (13) and then by using (12) and (9), we obtain

t e−
t
2

cosh t
2

eut =

∞∑
n=0

Φ1,b,−1,0

n,− b
2

(u)
tn

n!
,

or equivalently,

2t

et + 1
eut =

∞∑
n=0

Φ1,b,−1,0

n,− b
2

(u)
tn

n!

∞∑
n=0

Gn(u)
tn

n!
=

∞∑
n=0

Φ1,b,−1,0

n,− b
2

(u)
tn

n!
,

where Gn(u) are the Genocchi polynomials given in (3).

Hence, we have

(16) Φ1,b,−1,0

n,− b
2

(u) = Gn(u).

Also, it is possible to define the new mixed numbers by taking u = 0,
i.e.

(17) Φa,b,c,d
n,ν (0) = Φa,b,c,d

n,ν .
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Obviously, by assigning some particular values to the parameters (which are
discussed in case-I, case-II and case-III), these mixed numbers will easily re-
duces to the Bernoulli numbers Bn, Euler numbers En and Genocchi numbers
Gn.

Definition 2.2. For arbitrary real or complex parameter p, the higher order

mixed polynomials Φ
[p;a,b,c,d]
n,ν (u) are defined by

(18)
[
Gb,c,d

ν,a (t)
]p

eut =

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!
.

Clearly, for p = 1, (18) reduce to (13). Also, we get

Φ
[p;1,b,−1,1]

n,1− b
2

(u) = B(p)
n (u), Φ

[p;0,b,−1,0]

n,− b
2

(u) = E(p)
n (u) and Φ

[p;1,b,−1,0]

n,− b
2

(u) = G(p)
n (u),

where B(p)
n (u), E(p)

n (u) and G(p)
n (u) are the generalized Bernoulli, Euler and

Genocchi polynomials defined by (4), (5) and (6), respectively.

Furthermore for u = 0, we get a new family of higher order mixed num-
bers,
i.e.

(19) Φ[p;a,b,c,d]
n,ν (0) = Φ[p;a,b,c,d]

n,ν .

Some of the higher order mixed polynomials and numbers are listed below:

Φ
[p;a,b,c,d]

0,a− b
2

(u) =
Γ(a+ 1

2 )

π
p
2

2(2a−d)p,

Φ
[p;a,b,c,d]

1,a− b
2

(u) =
Γ(a+ 1

2 )

π
p
2

(
u− p

2

)
2(2a−d)p,

Φ
[p;a,b,c,d]

2,a− b
2

(u) =
Γ(a+ 1

2 )

π
p
2
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u− p

2

)2

+
pc

8(a+ 1
2 )
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2(2a−d)p,
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2

(u) =
Γ(a+ 1

2 )

π
p
2
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u− p

2

)3

+
3pc

(
u− p

2

)
8(a+ 1

2 )

}
2(2a−d)p,

Φ
[p;a,b,c,d]

4,a− b
2

(u) =
Γ(a+ 1

2 )

π
p
2

{(
u− p

2

)4

+
3pc

(
u− p

2

)2
4(a+ 1

2 )
− 3pc2
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(
a+ 1

2

) (
a+ 3

2

)
+
3p(p+ 1)c2

64
(
a+ 1

2

)2
}
2(2a−d)p, · · ·

and
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Φ
[p;a,b,c,d]

0,a− b
2

=
Γ(a+ 1

2 )

π
p
2

2(2a−d)p,

Φ
[p;a,b,c,d]

1,a− b
2

= −
p Γ(a+ 1

2 )

2 π
p
2

2(2a−d)p,

Φ
[p;a,b,c,d]

2,a− b
2

=
Γ(a+ 1

2 )

π
p
2

{
p2

4
+

pc

8(a+ 1
2 )

}
2(2a−d)p,

Φ
[p;a,b,c,d]

3,a− b
2

=
Γ(a+ 1

2 )

π
p
2

{
−p3

8
− 3p2c

16(a+ 1
2 )

}
2(2a−d)p,

Φ
[p;a,b,c,d]

4,a− b
2

=
Γ(a+ 1

2 )

π
p
2

{
p4

16
+

3cp3

16(a+ 1
2 )

− 3pc2
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(
a+ 1

2

) (
a+ 3

2

)
+
3p(p+ 1)c2

64
(
a+ 1

2

)2
}
2(2a−d)p, · · ·

For p = 1, all the above polynomials and numbers immediately reduce to

Φa,b,c,d

0,a− b
2

(u) =
Γ(a+ 1

2 )√
π

2(2a−d),

Φa,b,c,d

1,a− b
2

(u) =
Γ(a+ 1

2 )√
π

(
u− 1

2

)
2(2a−d),

Φa,b,c,d

2,a− b
2

(u) =
Γ(a+ 1

2 )√
π

{(
u− 1

2

)2

+
c

8(a+ 1
2 )

}
2(2a−d),

Φa,b,c,d

3,a− b
2

(u) =
Γ(a+ 1

2 )√
π

{(
u− 1

2

)3

+
3c

(
u− 1

2

)
8(a+ 1

2 )

}
2(2a−d),

Φa,b,c,d

4,a− b
2

(u) =
Γ(a+ 1

2 )√
π

{(
u− 1

2

)4

+
3c

(
u− 1

2

)2
4(a+ 1

2 )
− 3c2

64
(
a+ 1

2

) (
a+ 3

2

)
+

3c2

32
(
a+ 1

2

)2
}
2(2a−d), · · ·

and

Φa,b,c,d

0,a− b
2

=
Γ(a+ 1

2 )√
π

2(2a−d),

Φa,b,c,d

1,a− b
2

= −
Γ(a+ 1

2 )

2
√
π

2(2a−d),
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Φa,b,c,d

2,a− b
2

=
Γ(a+ 1

2 )√
π

{
1

4
+

c

8(a+ 1
2 )

}
2(2a−d),

Φa,b,c,d

3,a− b
2

=
Γ(a+ 1

2 )√
π

{
−1

8
− 3c

16(a+ 1
2 )

}
2(2a−d),

Φa,b,c,d

4,a− b
2

=
Γ(a+ 1

2 )√
π

{
1

16
+

3c

16(a+ 1
2 )

− 3c2

64
(
a+ 1

2

) (
a+ 3

2

)
+

3c2

32
(
a+ 1

2

)2
}
2(2a−d), · · · ,

which are our mixed polynomials and numbers defined by (13) and (17),
respectively.

Remark 2.1. If we compare our mixed polynomials Φa,b,c,d
n,ν (u) and Φ

[p;a,b,c,d]
n,ν (u)

given in (13) and (18), respectively, with the polynomials Bn,α(u) defined by
Frappier [5] then we see that these polynomials are showing two new extensions
(in a slightly different form) of Bn,α(u).

3. Properties of the Mixed polynomials

The main object of this section is to establish some basic properties of
our newly introduced polynomials, which are given in the following theorems:

Theorem 3.1. Let r ∈ N. Then we have the following derivatives for our
mixed polynomials:

(20)
dr

dur
Φ[p;a,b,c,d]

n,ν (u) =
n!

(n− r)!
Φ

[p;a,b,c,d]
n−r,ν (u)

and

(21)
dr

dur
Φa,b,c,d

n,ν (u) =
n!

(n− r)!
Φa,b,c,d

n−r,ν (u).

Proof. We have

(22)
[
Gb,c,d

ν,a (t)
]p

eut =

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!
.

Differentiating (22) r-times with respect to u, we get

(23) tr
[
Gb,c,d

ν,a (t)
]p

eut =

∞∑
n=0

dr

dur
Φ[p;a,b,c,d]

n,ν (u)
tn

n!

(24) tr
∞∑

n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!
=

∞∑
n=0

dr

dur
Φ[p;a,b,c,d]

n,ν (u)
tn

n!
.
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After comparing the coefficients of the powers of t on both sides of (24), we
easily get our needed result (20). The result (21) can be established with the
help of (20) by setting p = 1.

Theorem 3.2. For n ∈ N0 and v ∈ R, we have

(25) Φ[p;a,b,c,d]
n,ν (u+ v) =

n∑
k=0

nCk vkΦ
[p;a,b,c,d]
n−k,ν (u)

and

(26) Φa,b,c,d
n,ν (u+ v) =

n∑
k=0

nCk vkΦa,b,c,d
n−k,ν (u).

Proof. On replacing u by u+ v in (18), we get[
Gb,c,d

ν,a (t)
]p

eutevt =

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u+ v)

tn

n!

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!

∞∑
k=0

(vt)k

k!
=

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u+ v)

tn

n!

(27)

∞∑
n=0

∞∑
k=0

Φ[p;a,b,c,d]
n,ν (u)vk

tn+k

n!k!
=

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u+ v)

tn

n!
.

Now, by applying the Lemma 10 given in [24, p.56], we get our first claimed
result (25). For p = 1, (25) easily reduces to (26).

Corollary 3.3. On setting v = 1 in (25) and (26), we have

(28) Φ[p;a,b,c,d]
n,ν (u+ 1) =

n∑
k=0

nCk Φ
[p;a,b,c,d]
n−k,ν (u)

and

(29) Φa,b,c,d
n,ν (u+ 1) =

n∑
k=0

nCk Φa,b,c,d
n−k,ν (u).

Theorem 3.4. Let p and q are the real or complex parameters, n ∈ N0

and v ∈ R. Then the following identity for Φ
[p;a,b,c,d]
n,ν (u) holds:

(30) Φ[p+q;a,b,c,d]
n,ν (u+ v) =

n∑
k=0

nCk Φ
[p;a,b,c,d]
n−k,ν (u) Φ

[q;a,b,c,d]
k,ν (v).

Proof. Taking[
Gb,c,d

ν,a (t)
]p+q

e(u+v)t =

∞∑
n=0

Φ[p+q;a,b,c,d]
n,ν (u+ v)

tn

n!
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[
Gb,c,d

ν,a (t)
]p

eut
[
Gb,c,d

ν,a (t)
]q

evt =

∞∑
n=0

Φ[p+q;a,b,c,d]
n,ν (u+ v)

tn

n!

(31)

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!

∞∑
k=0

Φ
[q;a,b,c,d]
k,ν (v)

tk

k!
=

∞∑
n=0

Φ[p+q;a,b,c,d]
n,ν (u+ v)

tn

n!
.

Further, by applying the Lemma 10 given in [24, p.56], we easily arrive at
(30).

Theorem 3.5. For n ∈ N0 and α ∈ C, we have

(32) Φ[p;a,b,c,d]
n,ν (αu) =

n∑
k=0

nCk uk(α− 1)k Φ
[p;a,b,c,d]
n−k,ν (u)

and

(33) Φa,b,c,d
n,ν (αu) =

n∑
k=0

nCk uk(α− 1)k Φa,b,c,d
n−k,ν (u).

Proof. Taking
∞∑

n=0

Φ[p;a,b,c,d]
n,ν (αu)

tn

n!
=

[
Gb,c,d

ν,a (t)
]p

eαut

=
[
Gb,c,d

ν,a (t)
]p

eute(α−1)ut

=

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!

∞∑
k=0

{(α− 1)ut}k

k!

(34)

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (αu)

tn

n!
=

∞∑
n=0

n∑
k=0

nCk {(α− 1)u}k Φ
[p;a,b,c,d]
n−k,ν (u)

tn

n!
.

On equating the coefficients of the powers of t in both sides of (34), we get our
needed result (32). The result (33) can be established with the help of (32) by
putting p = 1.

Theorem 3.6. For n ∈ N, each of the following identities holds:

(35) Φ[p;a,b,c,d]
n,ν (u+1)−Φ[p;a,b,c,d]

n,ν (u) =
n−1∑
k=0

n!

k!(n− 1− k)!
Φ

[p;a,b,c,d]
n−1−k,ν (u) B

(−1)
k

and

(36) Φa,b,c,d
n,ν (u+ 1)− Φa,b,c,d

n,ν (u) =

n−1∑
k=0

n!

k!(n− 1− k)!
Φa,b,c,d

n−1−k,ν(u) B
(−1)
k ,

where B(−1)
k are the generalized Bernoulli numbers obtained from (4) by taking

u = 0.
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Proof. Taking[
Gb,c,d

ν,a (t)
]p

eut(et − 1) = t
[
Gb,c,d

ν,a (t)
]p

eut
(

t

et − 1

)−1

= t

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!

∞∑
k=0

B(−1)
k

tk

k!

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u+1)

tn

n!
−

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!
= t

∞∑
n=0

∞∑
k=0

Φ[p;a,b,c,d]
n,ν (u)B(−1)

k

tn+k

n! k!

(37)
∞∑

n=0

[
Φ[p;a,b,c,d]

n,ν (u+ 1)− Φ[p;a,b,c,d]
n,ν (u)

] tn

n!
=

∞∑
n=0

n∑
k=0

Φ
[p;a,b,c,d]
n−k,ν (u)B(−1)

k

tn+1

(n− k)! k!
.

On equating the coefficients of the powers of t in both sides of (37), we get our
required result (35). The result (36) can be established with the help of (35)
by taking p = 1.

Theorem 3.7. For n, k ∈ N0, each of the following relations holds:

(38) Φ[p;a,b,c,d]
n,ν (u+ 1) + Φ[p;a,b,c,d]

n,ν (u) = 2

n∑
k=0

nCk Φ
[p;a,b,c,d]
n−k,ν (u) E(−1)

k

and

(39) Φa,b,c,d
n,ν (u+ 1) + Φa,b,c,d

n,ν (u) = 2

n∑
k=0

nCk Φa,b,c,d
n−k,ν (u) E

(−1)
k ,

where E(−1)
k are the generalized Euler numbers obtained from (5) by setting

u = 0.

Proof. Taking[
Gb,c,d

ν,a (t)
]p

eut(et + 1) = 2
[
Gb,c,d

ν,a (t)
]p

eut
(

2

et + 1

)−1

= 2

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!

∞∑
k=0

E(−1)
k

tk

k!

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u+1)

tn

n!
+

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!
= 2

∞∑
n=0

∞∑
k=0

Φ[p;a,b,c,d]
n,ν (u)E(−1)

k

tn+k

n! k!

(40)
∞∑

n=0

[
Φ[p;a,b,c,d]

n,ν (u+ 1) + Φ[p;a,b,c,d]
n,ν (u)

] tn

n!
= 2

∞∑
n=0

n∑
k=0

Φ
[p;a,b,c,d]
n−k,ν (u)E(−1)

k

tn

(n− k)! k!
.
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On equating the coefficients of the powers of t in both sides of (40), we arrive
at our needed result (38). The result (39) can be established with the help of
(38) by setting p = 1.

Theorem 3.8. Let n ∈ N. Then each of the following relations holds:

(41) Φ[p;a,b,c,d]
n,ν (u+1)+Φ[p;a,b,c,d]

n,ν (u) = 2

n−1∑
k=0

n!

k!(n− 1− k)!
Φ

[p;a,b,c,d]
n−1−k,ν (u)G

(−1)
k

and

(42) Φa,b,c,d
n,ν (u+ 1) + Φa,b,c,d

n,ν (u) = 2

n−1∑
k=0

n!

k!(n− 1− k)!
Φa,b,c,d

n−1−k,ν(u) G
(−1)
k ,

whereG(−1)
k are the generalized Genocchi numbers obtained from (6) by putting

u = 0.

Proof. Proof of this theorem is similar to that of Theorem 3.6 and Theo-
rem 3.7.

4. Concluding remarks

In the present article, we have studied a new class of extended Bernoulli,
Euler and Genocchi polynomials by means of a single generating function in-
volving generalized Bessel function of the first kind wb

ν,c(t). We have also pre-
sented their various interesting properties by applying the series manipulation
technique. In this section, we briefly discuss the variations in the generating
functions of our newly introduced polynomials.

The generalized Bessel function of the first kind wb
ν,c(t) has the following

connections with the Wright hypergeometric function pΨq and Fox H-function

Ha,b
c,d (see for details [26]):

(43) wb
ν,c(t) =

(
t

2

)ν

0Ψ1

 −

(ν + 1+b
2 , 1)

| −ct2

4


and

(44) wb
ν,c(t) =

(
t

2

)ν

H1,0
0,2

ct2

4
|

−

(0, 1), (−ν + 1−b
2 , 1)

 .

Therefore, the generating function of our mixed polynomials given in (18), is
easily converted in terms of Wright hypergeometric function and Fox H-function
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as follows:

(45)

 Ωb,d
ν,a(t)

0Ψ1

[
−

(ν + 1+b
2 , 1)

| − ct2

4

]

p

eut =

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!

and

(46)

 Ωb,d
ν,a(t)

H1,0
0,2

[
ct2

4 | −
(0, 1), (−ν + 1−b

2 , 1)

]

p

eut =

∞∑
n=0

Φ[p;a,b,c,d]
n,ν (u)

tn

n!
,

where Ωb,d
ν,a(t) =

2b−d+2νta− b
2
−νe−

t
2√

π
.

Furthermore, on setting p = 1 in (45) and (46), we easily get the variations
in the generating function of our extended polynomials Φa,b,c,d

n,ν (u) defined by
(13).
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