References
- W. A. Al-Salam, q-Appell polynomials, Ann. Mat. Pura Appl. (4) 77 (1967), 31-45. https://doi.org/10.1007/BF02416939
- G. E. Andrews, R. Askey, and R. Roy, Special Functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9781107325937
- G.-S. Cheon and J.-H. Jung, The q-Sheffer sequences of a new type and associated orthogonal polynomials, Linear Algebra Appl. 491 (2016), 171-186. https://doi.org/10.1016/j.laa.2015.07.008
- U. Duran, M. Acikgoz, and S. Araci, On higher order (p, q)-Frobenius-Euler polynomials, TWMS J. Pure Appl. Math. 8 (2017), no. 2, 198-208.
- M. Eini Keleshteri and N. I. Mahmudov, A study on q-Appell polynomials from determinantal point of view, Appl. Math. Comput. 260 (2015), 351-369. https://doi.org/10.1016/j.amc.2015.03.017
- M. Eini Keleshteri and N. I. Mahmudov, On the class of 2D q-Appell polynomials, arXiv:1512.03255v1.
- B. Kurt, A note on the Apostol type q-Frobenius-Euler polynomials and generalizations of the Srivastava-Pinter addition theorems, Filomat 30 (2016), no. 1, 65-72. https://doi.org/10.2298/FIL1601065K
- N. I. Mahmudov, On a class of q-Bernoulli and q-Euler polynomials, Adv. Difference Equ. 2013 (2013), 108, 11 pp. https://doi.org/10.1186/1687-1847-2013-108
- N. I. Mahmudov, Difference equations of q-Appell polynomials, Appl. Math. Comput. 245 (2014), 539-543. https://doi.org/10.1016/j.amc.2014.07.107
- N. I. Mahmudov and M. E. Keleshteri, q-extensions for the Apostol type polynomials, J. Appl. Math. 2014 (2014), Art. ID 868167, 8 pp. https://doi.org/10.1155/2014/868167
- N. I. Mahmudov and M. Momenzadeh, On a class of q-Bernoulli, q-Euler, and q-Genocchi polynomials, Abstr. Appl. Anal. 2014 (2014), Art. ID 696454, 10 pp. https://doi.org/10.1155/2014/696454
- M. A. Pathan and W. A. Khan, Some implicit summation formulas and symmetric identities for the generalized Hermite-Bernoulli polynomials, Mediterr. J. Math. 12 (2015), no. 3, 679-695. https://doi.org/10.1007/s00009-014-0423-0
- M. A. Pathan and W. A. Khan, A new class of generalized polynomials associated with Hermite and Euler polynomials, Mediterr. J. Math. 13 (2016), no. 3, 913-928. https://doi.org/10.1007/s00009-015-0551-1
- M. Riyasat and S. Khan, Some results on q-Hermite based hybrid polynomials, Glas. Mat. Ser. III 53(73) (2018), no. 1, 9-31. https://doi.org/10.3336/gm.53.1.02
- H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester, 1984.
- B. Yilmaz Yasar and M. A. Ozarslan, Frobenius-Euler and Frobenius-Genocchi polynomials and their differential equations, New Trends Math. Sci. 3 (2015), no. 2, 172-180.