• Title/Summary/Keyword: Poisson's equation

Search Result 230, Processing Time 0.038 seconds

A Study on the Modeling of DI Switching Device by FEM (유한요소법에 의한 DI 스위칭 소자의 모델링에 관한 연구)

  • Lee, Hyun-Seok;Lee, Kye-Hoon;Rhle, Dong-Hee;Park, Sung-Hee
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.2
    • /
    • pp.285-295
    • /
    • 1994
  • Double Injection(DI) switching devices consist of PS0+T and nS0+T contact separated by a nearly intrinsic semiconductor region containing deep trap. The equation set for DI switching device simulation by FEM is proposed. The existance of deep trap requires the modification of conventional equation set. So recombination rate equation is modified and a new equation is included in the equation set which conventionally consists op Poisson equation and current continuity equation. Consequently, the modeling equation set, which is proposed in this paper, can be applied to other semiconductor devices with trap.

A New Two-Dimensional Model for the Drain-Induced Barrier Lowering of Fully Depleted Short-Channel SOI-MESFET's

  • Jit, S.;Pandey, Prashant;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2003
  • A new two-dimensional analytical model for the potential distribution and drain-induced barrier lowering (DIBL) effect of fully depleted short-channel Silicon-on-insulator (SOI)-MESFET's has been presented in this paper. The two dimensional potential distribution functions in the active layer of the device is approximated as a simple parabolic function and the two-dimensional Poisson's equation has been solved with suitable boundary conditions to obtain the bottom potential at the Si/oxide layer interface. It is observed that for the SOI-MESFET's, as the gate-length is decreased below a certain limit, the bottom potential is increased and thus the channel barrier between the drain and source is reduced. The similar effect may also be observed by increasing the drain-source voltage if the device is operated in the near threshold or sub-threshold region. This is an electrostatic effect known as the drain-induced barrier lowering (DIBL) in the short-gate SOI-MESFET's. The model has been verified by comparing the results with that of the simulated one obtained by solving the 2-D Poisson's equation numerically by using the pde toolbox of the widely used software MATLAB.

Development of 3-D Field Grid Generating Method for Viscous Flow Calculation around a Practical Hull Form (선체주위의 점성유동 계산을 위한 3차원 공간 격자계 생성방법)

  • Wu-Joan Kim;Do-Hyun Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.70-81
    • /
    • 1999
  • To predict the viscous boundary layers and wakes around a ship, the CFD techniques are commonly used. For the efficient application of CFD tools to practical hull farms, a 3-D field grid generating system is developed. The present grid generating system utilizes the solution of Poisson equation. Sorenson's method developed for 2-D is extended into 3-D to provide the forcing functions controling grid interval and orthogonality on hull surface, etc. The weighting function scheme is used for the discretization of the Poisson equation and the linear equations are solved by using MSIP salver. The trans-finite interpolation is also employed to assure the smooth transition into boundary surface grids. To rove the applicability, the field grid systems around a container ship and a VLCC with bow and stem bulb are illustrated, and the procedures for generating 3-D field grid system are explained.

  • PDF

A Study on Grid Adaptation by Poisson Equation (푸아송 방정식을 이용한 격자 적응에 대한 연구)

  • 맹주성;문영준;김종태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.182-189
    • /
    • 1993
  • To improve the resolution of complex flow field features, grid adaptation scheme of Anderson has been revised, which was based on the Poisson grid generator of Thompson. Anderson's original scheme adapts the grid to solution automatically, but if flow field is more or less complex, then the adaptivity is weak. So the technique of using threshold which is used in unstructured grid system is adopted. The regions of large variation in the solution are marked by marking function which has the property of total variation of the solution, and these regions have same values of weight but other regions are neglected. This updated method captures shocks clearly and sharpy. Four examples are demonstrated, (1) Hypersonic flow past a blunt body, (2) High speed inlet analysis, (3) Supersonic flow of M=1.4 over a 4% biconvex airfoil in a channel, (4) Hypersonic shock-on-shock interaction at M=8.03.

An anisotropic mesh refinement for an unstructured finite volume method (비정렬 유한 체적법을 위한 비등방 격자 미세화 기법)

  • Lee K. S.;Baek J. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.77-82
    • /
    • 2004
  • A new anisotropic mesh refinement method is proposed. The new method is based on a simple second order interpolation error indicator. Therefore, it is methodologically direct and intuitive as compared with traditional anisotropic refinement strategies. Moreover, it does not depend on the mesh type. The error indicator is face-wisely calculated for all faces in a mesh and the cell refinement type is determined by the configuration of face markings with a given threshold. For the sake of simplicity, an application for a poisson equation on a triangle mesh is considered. The error field and resultant mesh refinement pattern are compared and effects of the threshold selection are discussed. Applying anisotropic refinement with various thresholds, we observed higher convergence rates than those in the uniform refinement cases.

  • PDF

An Analytical Modeling and Simulation of Dual Material Double Gate Tunnel Field Effect Transistor for Low Power Applications

  • Arun Samuel, T.S.;Balamurugan, N.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.247-253
    • /
    • 2014
  • In this paper, a new two dimensional (2D) analytical modeling and simulation for a Dual Material Double Gate tunnel field effect transistor (DMDG TFET) is proposed. The Parabolic approximation technique is used to solve the 2-D Poisson equation with suitable boundary conditions and analytical expressions for surface potential and electric field are derived. This electric field distribution is further used to calculate the tunnelling generation rate and thus we numerically extract the tunnelling current. The results show a significant improvement in on-current characteristics while short channel effects are greatly reduced. Effectiveness of the proposed model has been confirmed by comparing the analytical results with the TCAD simulation results.

The Calculation Method of the Breakdown Voltage for the Drain Region with the Cylindrical Structure in LDMOS (Cylindrical 구조를 갖는 LDMOS의 Drain 역방향 항복전압의 계산 방법)

  • Lee, Un Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1872-1876
    • /
    • 2012
  • A calculation method of the breakdown voltage for the drain region with the cylindrical structure in LDMOS is proposed. The depletion region of the drain is divided into many smaller regions and the doping concentration of each split region is assumed to be uniformly distributed. The field and potential in each split region is calculated by the integration of the Poisson equation and the ionization integral method is used to compute the breakdown voltage. The breakdown voltage resulted from the proposed method shows the maximum relative error of 2.2% compared with the result of the 2-dimensional device simulation using BANDIS.

Analysis of Channel Doping Profile Dependent Threshold Voltage Characteristics for Double Gate MOSFET (이중게이트 MOSFET에서 채널도핑분포의 형태에 따른 문턱전압특성분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1338-1342
    • /
    • 2011
  • In this paper, threshold voltage characteristics have been analyzed as one of short channel effects occurred in double gate(DG)MOSFET to be next-generation devices. The Gaussian function to be nearly experimental distribution has been used as carrier distribution to solve Poisson's equation, and threshold voltage has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and threshold voltage has been obtained from this model. Since threshold voltage has been defined as gate voltage when surface potential is twice of Fermi potential, threshold voltage has been derived from analytical model of surface potential. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the threshold voltage characteristics have been considered according to the doping profile of DGMOSFET.

Analysis of Drain Induced Barrier Lowering for Double Gate MOSFET Using Gaussian Distribution (가우스분포를 이용한 이중게이트 MOSFET의 드레인유기장벽감소 분석)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.2
    • /
    • pp.325-330
    • /
    • 2012
  • In this paper, drain induced barrier lowering(DIBL) has been analyzed as one of short channel effects occurred in double gate(DG) MOSFET to be next-generation devices. Since Gaussian function been used as carrier distribution for solving Poisson's equation to obtain analytical solution of potential distribution, we expect our results using this model agree with experimental results. DIBL has been investigated according to projected range and standard projected deviation as variables of Gaussian function, and channel structure and channel doping intensity as device parameter. Since the validity of this analytical potential distribution model derived from Poisson's equation has already been proved in previous papers, DIBL has been analyzed using this model. Resultly, DIBL has been greatly changed for channel structure and doping concentration.

Analysis of Subthreshold Swing for Channel Doping of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 채널도핑에 따른 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.651-656
    • /
    • 2014
  • This paper analyzed the change of subthreshold swing for channel doping of asymmetric double gate(DG) MOSFET. The subthreshold swing is the factor to describe the decreasing rate of off current in the subthreshold region, and plays a very important role in application of digital circuits. Poisson's equation was used to analyze the subthreshold swing for asymmetric DGMOSFET. Asymmetric DGMOSFET could be fabricated with the different top and bottom gate oxide thickness and bias voltage unlike symmetric DGMOSFET. It is investigated in this paper how the doping in channel, gate oxide thickness and gate bias voltages for asymmetric DGMOSFET influenced on subthreshold swing. Gaussian function had been used as doping distribution in solving the Poisson's equation, and the change of subthreshold swing was observed for projected range and standard projected deviation used as parameters of Gaussian distribution. Resultly, the subthreshold swing was greatly changed for doping concentration and profiles, and gate oxide thickness and bias voltage had a big impact on subthreshold swing.