• Title/Summary/Keyword: Phase-Locked-Loop (PLL)

Search Result 415, Processing Time 0.019 seconds

New Configuration of a PLDRO with an Interconnected Dual PLL Structure for K-Band Application

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.138-146
    • /
    • 2017
  • A phase-locked dielectric resonator oscillator (PLDRO) is an essential component of millimeter-wave communication, in which phase noise is critical for satisfactory performance. The general structure of a PLDRO typically includes a dual loop of digital phase-locked loop (PLL) and analog PLL. A dual-loop PLDRO structure is generally used. The digital PLL generates an internal voltage controlled crystal oscillator (VCXO) frequency locked to an external reference frequency, and the analog PLL loop generates a DRO frequency locked to an internal VCXO frequency. A dual loop is used to ease the phase-locked frequency by using an internal VCXO. However, some of the output frequencies in each PLL structure worsen the phase noise because of the N divider ratio increase in the digital phase-locked loop integrated circuit. This study examines the design aspects of an interconnected PLL structure. In the proposed structure, the voltage tuning; which uses a varactor diode for the phase tracking of VCXO to match with the external reference) port of the VCXO in the digital PLL is controlled by one output port of the frequency divider in the analog PLL. We compare the proposed scheme with a typical PLDRO in terms of phase noise to show that the proposed structure has no performance degradation.

A Fast Lock and Low Jitter Phase Locked Loop with Locking Status Indicator (Locking 상태 표시기를 이용한 저잡음 고속 위상고정 루프)

  • Choi Young-Shig;Han Dae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.582-586
    • /
    • 2005
  • This paper presents a new structure of Phase Locked Loop(PLL) which changes its loop bandwidth according to the locking status. The proposed PLL consists of a conventional PLL and, Locking Status Indicator(LSI). The LSI decides the operating bandwidth of loop filler. When the PLL becomes out of lock, the PLL increases the loop bandwidth and achieves fast locking. When the PLL becomes in-lock, this PLL decreases the loop bandwidth and minimizes phase noise output. The PLL can achieve fast locking and low phase noise output at the same time. Proposed PLL's locking time is less than $40{\mu}s$ and spur is 76.1dBc. It is simulated by HSPICE in a Hynix CMOS $0.35{\mu}m$ Process.

PLL Control Scheme for Robust Driving of SRM Drive (SRM 드라이브의 강인한 운전을 위한 PLL 제어 방식)

  • O, Seok-Gyu;Jeong, Tae-Uk;Park, Han-Ung;An, Jin-U;Hwang, Yeong-Mun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.9
    • /
    • pp.461-466
    • /
    • 1999
  • The switched reluctance motor (SRM) would have torque ripple if not operated with an MMF waveform specified for switching angle and phase voltage. This paper describes the robustic control scheme that permits the phase torque to be flat by PLL(Phase Locked Loop) controller. In this control scheme, the locked phase signal of PLL controls the switching dwell angle and it's loop filter signal controls the switching voltage adaptively. Experimental results show that stable dynamic performance is obtained for torque and speed together with low torque ripple on the operation of variable loads.

  • PDF

CMOS 120 GHz Phase-Locked Loops Based on Two Different VCO Topologies

  • Yoo, Junghwan;Rieh, Jae-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.98-104
    • /
    • 2017
  • This work describes the development and comparison of two phase-locked loops (PLLs) based on a 65-nm CMOS technology. The PLLs incorporate two different topologies for the output voltage-controlled oscillator (VCO): LC cross-coupled and differential Colpitts. The measured locking ranges of the LC cross-coupled VCO-based phase-locked loop (PLL1) and the Colpitts VCO-based phase-locked loop (PLL2) are 119.84-122.61 GHz and 126.53-129.29 GHz, respectively. Th e output powers of PLL1 and PLL2 are -8.6 dBm and -10.5 dBm with DC power consumptions of 127.3 mW and 142.8 mW, respectively. Th e measured phase noise of PLL1 is -59.2 at 10 kHz offset and -104.5 at 10 MHz offset, and the phase noise of PLL2 is -60.9 dBc/Hz at 10 kHz offset and -104.4 dBc/Hz at 10 MHz offset. The chip sizes are $1,080{\mu}m{\times}760{\mu}m$ (PLL1) and $1,100{\mu}m{\times}800{\mu}m$ (PLL2), including the probing pads.

A Low Jitter and Fast Locking Phase-Lock Loop with Adaptive Bandwidth Controller

  • Song Youn-Gui;Choi Young-Shig
    • Journal of information and communication convergence engineering
    • /
    • v.3 no.1
    • /
    • pp.18-22
    • /
    • 2005
  • This paper presents the analog adaptive phase-locked loop (PLL) architecture with a new adaptive bandwidth controller to reduce locking time and minimize jitter in PLL output for wireless communication. It adaptively controls the loop bandwidth according to the locking status. When the phase error is large, the PLL increases the loop bandwidth and reduces locking time. When the phase error is small, the PLL decreases the loop bandwidth and minimizes output jitters. The adaptive bandwidth control is implemented by controlling charge pump current depending on the locking status. A 1.28-GHz CMOS phase-locked loop with adaptive bandwidth control is designed with 0.35 $mu$m CMOS technology. It is simulated by HSPICE and achieves the primary reference sidebands at the output of the VCO are approximately -80dBc.

Research on improving performance of phase locked loop algorithm (위상추종(Phase Locked Loop)알고리즘 성능개선을 위한 제어방법 연구)

  • Lim, J.W.;Cho, Y.H.;Cheo, G.H.
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.185-186
    • /
    • 2015
  • This paper introduces general single PLL(Phase Locked Loop) algorithm and compares with proposed PLL method. The suggested PLL uses low pass filter to reduce high harmonics in real grid and uses feed forward method to compensate phase delay of the low pass filter.

  • PDF

A Method to Improve the Performance of Phase-Locked Loop (PLL) for a Single-Phase Inverter Under the Non-Sinusoidal Grid Voltage Conditions (비정현 계통 전압하에서 단상 인버터의 PLL 성능 개선 방법)

  • Khan, Reyyan Ahmad;Ashraf, Muhammad Noman;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2017.11a
    • /
    • pp.7-8
    • /
    • 2017
  • The Phase-Locked Loop (PLL) is widely used in grid-tie inverter applications to achieve the synchronization between the inverter and the grid. However, its performance is deteriorated when the grid voltage is not pure sinusoidal due to the harmonics and the frequency deviation. Therefore it is important to design a high performance phase-locked loop (PLL) for the single phase inverter applications to guarantee the quality of the inverter output. In this paper a simple method to improve the performance of the PLL for the single phase inverter is proposed. The proposed PLL is able to accurately estimate the fundamental frequency component of the grid voltage even in the presence of harmonic components. In additional its transient response is fast enough to track a change in grid voltage within two cycles of the fundamental frequency. The effectiveness of the proposed PLL is confirmed through the PSIM simulation and experiments.

  • PDF

A 166MHz Phase-locked Loop-based Frequency Synthesizer (166MHz 위상 고정 루프 기반 주파수 합성기)

  • Minjun, Cho;Changmin, Song;Young-Chan, Jang
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.714-721
    • /
    • 2022
  • A phase-locked loop (PLL)-based frequency synthesizer is proposed for a system on a chip (SoC) using multi-frequency clock signals. The proposed PLL-based frequency synthesizer consists of a charge pump PLL which is implemented by a phase frequency detector (PFD), a charge pump (CP), a loop filter, a voltage controlled oscillator (VCO), and a frequency divider, and an edge combiner. The PLL outputs a 12-phase clock by a VCO using six differential delay cells. The edge combiner synthesizes the frequency of the output clock through edge combining and frequency division of the 12-phase output clock of the PLL. The proposed PLL-based frequency synthesizer is designed using a 55-nm CMOS process with a 1.2-V supply voltage. It outputs three clocks with frequencies of 166 MHz, 83 MHz and 124.5MHz for a reference clock with a frequency of 20.75 MHz.

A New Phase-Locked Loop System with the Controllable Output Phase and Lock-up Time

  • Vibunjarone, Vichupong;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1836-1840
    • /
    • 2003
  • This paper, we propose a new phase-locked loop (PLL) system with the controllable output phase, independent from the output frequency, and lock-up time. This PLL system has a dual control loop is described, the inner loop greatly improved VCO characteristic such as faster speed response as well as higher operation bandwidth, to minimize the effect of the VCO noise and the power supply variation and also get better linearity of VCO output. The main loop is the heart of this PLL which greatly improved the output frequency instability due to the external high frequency noise coupling to the input reference frequency also the main loop can control the output phase, independent from the output frequency, and reduce the lock-up time of the step frequency response. The experimental results confirm the validity of the proposed strategy.

  • PDF

Performance Analysis of Adaptive Bandwidth PLL According to Board Design (보드 설계에 따른 Adaptive Bandwidth PLL의 성능 분석)

  • Son, Young-Sang;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.4
    • /
    • pp.146-153
    • /
    • 2008
  • In this paper, a integrated phase-locked loop(PLL) as a clock multiphase generator for a high speed serial link is designed. The designed PLL keeps the same bandwidth and damping factor by using programmable current mirror in the whole operation frequency range. Also, the close-loop transfer function and VCO's phase-noise transfer function of the designed PLL are obtained with circuit netlists. The self impedance on board-mounted chip is calculated according to sizes and positions of decoupling capacitors. Especially, the detailed self-impedance analysis is carried out between frequency ranges represented the maximum gain in the close-loop transfer function and the maximum gain in the VCO's phase noise transfer function. We shows PLL's jitter characteristics by decoupling capacitor's sizes and positions from this result. The designed PLL has the wide operating range of 0.4GHz to 2GHz in operating voltage of 1.8V and it is designed 0.18-um CMOS process. The reference clock is 100MHz and PLL power consumption is 17.28mW in 1.2GHz.