Performance Analysis of Adaptive Bandwidth PLL According to Board Design

보드 설계에 따른 Adaptive Bandwidth PLL의 성능 분석

  • Published : 2008.04.25

Abstract

In this paper, a integrated phase-locked loop(PLL) as a clock multiphase generator for a high speed serial link is designed. The designed PLL keeps the same bandwidth and damping factor by using programmable current mirror in the whole operation frequency range. Also, the close-loop transfer function and VCO's phase-noise transfer function of the designed PLL are obtained with circuit netlists. The self impedance on board-mounted chip is calculated according to sizes and positions of decoupling capacitors. Especially, the detailed self-impedance analysis is carried out between frequency ranges represented the maximum gain in the close-loop transfer function and the maximum gain in the VCO's phase noise transfer function. We shows PLL's jitter characteristics by decoupling capacitor's sizes and positions from this result. The designed PLL has the wide operating range of 0.4GHz to 2GHz in operating voltage of 1.8V and it is designed 0.18-um CMOS process. The reference clock is 100MHz and PLL power consumption is 17.28mW in 1.2GHz.

High speed serial link에 적합한 clock multiphase generator용 integrated phase-locked loop (PLL)을 설계하였다. 설계된 PLL은 programmable current mirror를 사용하여 동작 범위 안에서 동일한 loop bandwidth와 damping factor를 가진다. 또한 설계한 PLL 회로 netlists를 가지고 HSPICE 시뮬레이션을 통해 close-loop transfer function과 VCO의 phase noise transfer function을 구하였다. Board 위 칩의 자체 임피던스는 decoupling capacitor의 크기와 위치에 따라 계산된다. 세부적으로, close-loop transfer function에서 gain의 최대값과 VCO noise transfer function에서 gain의 최대값 사이의 주파수범위에서 decoupling capacitor의 크기와 위치에 따른 보드 위 칩의 자체 임피던스를 구하였다. 이를 바탕으로 보드에서의 decoupling capacitor의 크기와 위치가 PLL의 jitter에 어떠한 영향을 미치는지 분석하였다. 설계된 PLL은 1.8V의 동작 전압에서 400MHz에서 2GH의 wide operation range를 가지며 $0.18-{\mu}m$ EMOS공정으로 설계하였다. Reference clock은 100MHz이며 전체 PLL power consumption은 1.2GHz에서 17.28 mW이다.

Keywords

References

  1. Mozhgan Mansuri, Dean Liu, and Chih-Kong Ken Yang, "Fast Frequency Acquisition Phase-Frequency Detectors for GSamples/s Phase-Locked Loops" IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 10, pp. 1331-1334, OCTOBER 2002 https://doi.org/10.1109/JSSC.2002.803048
  2. Sungjoon Kim, Kyeongho Lee, Yongsam Moon, Deog-Kyoon Jeong, Yunho Choi and Hyung Kyu Lim, "A 960-Mb/s/pin Interface for Skew-Tolerant Bus Using Low Jitter PLL" IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 5, pp. 691-700, MAY 1997 https://doi.org/10.1109/4.568836
  3. John G. Maneatis, Jaeha Kim, Iain McClatchie, Jay Maxey, and Manjusha Shankaradas, "Self-Biased High-Bandwidth Low-Jitter 1-to-4096 Multiplier Clock Generator PLL", IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 11, pp. 1795-1803, NOVEMBER 2003 https://doi.org/10.1109/JSSC.2003.818298
  4. Mozhgan Mansuri and Chih-Kong Ken Yang, "Jitter Optimization Based on Phase-Locked Loop Design Parameters" IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 37, NO. 11, pp. 1375-1382, NOVEMBER 2002 https://doi.org/10.1109/JSSC.2002.803935
  5. Jae-Shin Lee, Min-Sun Keel, Shin-Il Lim and Suki Kim, "Charge pump with perfect current matching characteristics in phase-locked loops" ELECTRONICS LETTERS, VOL. 36, NO. 23, pp. 1907-1908, 9th November 2000 https://doi.org/10.1049/el:20001358
  6. Pavan Kumar Hanumolu, Merrick Brownlee, Kartikeya Mayaram and Un-Ku Moon, "Analysis of Charge-Pump Phase-Locked Loops" IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS--I; REGULAR PAPERS, VOL. 51, NO. 9, pp. 1665-1674, SEPTEMBER 2004 https://doi.org/10.1109/TCSI.2004.834516
  7. Istvan Novak, "Lossy Power Distribution Networks With Thin Dielectric Layers and/or ThinConductiveLayers" IEEE TRANSACTIONS ON ADVANCED PACKAGING, VOL. 23, NO. 3, pp. 353-360, AUGUST 2000 https://doi.org/10.1109/6040.861547
  8. 위재경, "고속 메모리 모듈에서 칩 간의 파워커플링에 위한 파워 잡음 분석" 전자공학회논문지, 제41권 D편, 제10호, 31-39쪽, 2004년 10월