• Title/Summary/Keyword: PLL Circuits

Search Result 79, Processing Time 0.029 seconds

A Feed-forward Method for Reducing Current Mismatch in Charge Pumps (전하 펌프의 전류 부정합 감소를 위한 피드포워드 방식)

  • Lee, Jae-Hwan;Jeong, Hang-Geun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.1
    • /
    • pp.63-67
    • /
    • 2009
  • Current mismatch in a charge pump causes degradation in spectral purity of the phase locked loops(PLLs), such as reference spurs. The current mismatch can be reduced by increasing the output resistance of the charge pump, as in a cascoded output stage. However as the supply voltage is lowered, it is hard to stack transistors. In this paper, a new method for reducing the current mismatch is proposed. The proposed method is based on a feed-forward compensation for the channel length modulation effect of the output stage. The new method has been demonstrated through simulations on typical $0.18{\mu}m$ CMOS circuits.

An MMIC VCO Design and Fabrication for PCS Applications

  • Kim, Young-Gi;Park, Jin-Ho
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.202-207
    • /
    • 1997
  • Design and fabrication issues for an L-band GaAs Monolithic Microwave Integrated Circuit(MMIC) Voltage Controlled Oscillator(VCO) as a component of Personal Communications Systems(PCS) Radio Frequency(RF) transceiver are discussed. An ion-implanted GaAs MESFET tailored toward low current and low noise with 0.5mm gate length and 300mm gate width has been used as an active device, while an FET with the drain shorted to the source has been used as the voltage variable capacitor. The principal design was based on a self-biased FET with capacitive feedback. A tuning range of 140MHz and 58MHz has been obtained by 3V change for a 600mm and a 300mm devices, respectively. The oscillator output power was 6.5dBm wth 14mA DC current supply at 3.6V. The phase noise without any buffer or PLL was 93dB/1Hz at 100KHz offset. Harmonic balance analysis was used for the non-linear simulation after a linear simulation. All layout induced parasitics were incorporated into the simulation with EEFET2 non-linear FET model. The fabricated circuits were measured using a coplanar-type probe for bare chips and test jigs with ceramic packages.

  • PDF

A Multiphase DLL Based on a Mixed VCO/VCDL for Input Phase Noise Suppression and Duty-Cycle Correction of Multiple Frequencies (입력 위상 잡음 억제 및 체배 주파수의 듀티 사이클 보정을 위한 VCO/VCDL 혼용 기반의 다중위상 동기회로)

  • Ha, Jong-Chan;Wee, Jae-Kyung;Lee, Pil-Soo;Jung, Won-Young;Song, In-Chae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.11
    • /
    • pp.13-22
    • /
    • 2010
  • This paper proposed the dual-loops multiphase DLL based mixed VCO/VCDL for a high frequency phase noise suppression of the input clock and the multiple frequencies generation with a precise duty cycle. In the proposed architecture, the dual-loops DLL uses the dual input differential buffer based nMOS source-coupled pairs at the input stage of the mixed VCO/VCDL. This can easily convert the input and output phase transfer of the conventional DLL with bypass pass filter characteristic to the input and output phase transfer of PLL with low pass filter characteristic for the high frequency input phase noise suppression. Also, the proposed DLL can correct the duty-cycle error of multiple frequencies by using only the duty-cycle correction circuits and the phase tracking loop without additional correction controlled loop. At the simulation result with $0.18{\mu}m$ CMOS technology, the output phase noise of the proposed DLL is improved under -13dB for 1GHz input clock with 800MHz input phase noise. Also, at 1GHz operating frequency with 40%~60% duty-cycle error, the duty-cycle error of the multiple frequencies is corrected under $50{\pm}1%$ at 2GHz the input clock.

Noise Analysis and Measurement for a CW Bio-Radar System for Non-Contact Measurement of Heart and Respiration Rate (호흡 및 심박수 측정을 위한 비접촉 방식의 CW 바이오 레이더 시스템의 잡음 분석 및 측정)

  • Jang, Byung-Jun;Yook, Jong-Gwan;Na, Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1010-1019
    • /
    • 2008
  • In this paper, we present a noise analysis and measurement results of a bio-radar system that can detect human heartbeat and respiration signals. The noise analysis including various phase noise effects is very important in designing the bio-radar system, since the frequency difference between the received signal and local oscillator is very small and the received power is very low. All of the noise components in a bio-radar system are considered from the point of view of SNR. From this analysis, it can be concluded that the phase noise due to antenna leakage is a dominant factor and is a function of range correlation. Therefore, the phase noise component with range correlation effect, which is the most important noise contribution, is measured using the measurement setup and compared with the calculated results. From the measurement results, our measurement setup can measure a closed-in phase noise of a free-running oscillator. Based on these results, it is possible to design a 2.4 GHz bio-radar system quantitatively which has a detection range of 50 cm and low power of 1 mW without additional PLL circuits.

A Design of Prescaler with High-Speed and Low-Power D-Flip Flops (고속 저전력 D-플립플롭을 이용한 프리스케일러 설계)

  • Park Kyung-Soon;Seo Hae-Jun;Yoon Sang-Il;Cho Tae-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.8 s.338
    • /
    • pp.43-52
    • /
    • 2005
  • An prescaler which uses PLL(Phase Locked Loop) must satisfy high speed operation and low power consumption. Thus the performance or TSPC(True Single Phase Clocked) D-flip flops which is applied at Prescaler is very important. Power consumption of conventional TSPC D-flip flops was increased with glitches from output and unnecessary discharge at internal node in precharge phase. We proposed a new D-flip flop which reduced two clock transistors for precharge and discharge Phase. With inserting a new PMOS transistor to the input stage, we could prevent from unnecessary discharge in precharge phase. Moreover, to remove the glitch problems at output, we inserted an PMOS transistor in output stage. The proposed flip flop showed stable operations as well as low power consumption. The maximum frequency of prescaler by applying the proposed D-flip flop was 2.92GHz and achieved power consumption of 10.61mw at 3.3V. In comparison with prescaler applying the conventional TSPC D-flip $flop^[6]$, we obtained the performance improvement of $45.4\%$ in the view of PDP(Power-Belay-Product).

A 900 MHz Zero-IF RF Transceiver for IEEE 802.15.4g SUN OFDM Systems

  • Kim, Changwan;Lee, Seungsik;Choi, Sangsung
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.352-360
    • /
    • 2014
  • This paper presents a 900 MHz zero-IF RF transceiver for IEEE 802.15.4g Smart Utility Networks OFDM systems. The proposed RF transceiver comprises an RF front end, a Tx baseband analog circuit, an Rx baseband analog circuit, and a ${\Delta}{\Sigma}$ fractional-N frequency synthesizer. In the RF front end, re-use of a matching network reduces the chip size of the RF transceiver. Since a T/Rx switch is implemented only at the input of the low noise amplifier, the driver amplifier can deliver its output power to an antenna without any signal loss; thus, leading to a low dc power consumption. The proposed current-driven passive mixer in Rx and voltage-mode passive mixer in Tx can mitigate the IQ crosstalk problem, while maintaining 50% duty-cycle in local oscillator clocks. The overall Rx-baseband circuits can provide a voltage gain of 70 dB with a 1 dB gain control step. The proposed RF transceiver is implemented in a $0.18{\mu}$ CMOS technology and consumes 37 mA in Tx mode and 38 mA in Rx mode from a 1.8 V supply voltage. The fabricated chip shows a Tx average power of -2 dBm, a sensitivity level of -103 dBm at 100 Kbps with PER < 1%, an Rx input $P_{1dB}$ of -11 dBm, and an Rx input IP3 of -2.3 dBm.

Design of Digital Signal Processor for Ethernet Receiver Using TP Cable (TP 케이블을 이용하는 이더넷 수신기를 위한 디지털 신호 처리부 설계)

  • Hong, Ju-Hyung;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.785-793
    • /
    • 2007
  • This paper presents the digital signal processing submodule of a 100Base-TX Ethernet receiver to support 100Mbps at TP cable channel. The proposed submodule consists of programmable gain controller, timing recovery, adaptive equalizer and baseline wander compensator. The measured Bit Error Rate is less than $10^{-12}BER$ when continuously receiving data up to 150m. The proposed signal processing submodule is implemented in digital circuits except for PLL and amplifier. The performance improvement of the proposed equalizer and BLW compensator is measured about 1dB compared with the existing architecture that removes BLW using errors of an adaptive equalizer. The architecture has been modeled using Verilog-HDL and synthesized using samsung $0.18{\mu}m$ cell library. The implemented digital signal processing submodule operates at 142.7 MHz and the total number of gates are about 128,528.

Synchronization Algorithm and Demodulation using the Phase Transition Detection in the DSP based MPSK Receiver (DSP 기반 MPSK 수신기에서 위상천이 검출을 이용한 동기 알고리즘과 복조)

  • Lee Jun-Seo;Maing Jun-Ho;Ryu Heung-Gyoon;Park Cheol-Sun;Jang Won
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.10 s.89
    • /
    • pp.952-960
    • /
    • 2004
  • PSK(Phase Shift Keying) is useful because of the power and spectral efficient modulation. In this paper, no additional hardware will be needed to support various transmit mode in the suggested DSP scheme. We design and implement the synchronization algorithm for M-ary PSK(M=2, 4) demodulator based on DSP scheme, instead of complex analog PSK demodulator. TMS320C6203 is used as DSP. We check the all kinds of waveforms via the graph view window after software programming the emulation on the DSP tool. The result of implementation proves that demodulator using the suggested algorithm has equal performance with demodulator using analog circuits.

Design and Performance Analysis of the Digital Phase-Locked Loop For Frequency Hopping Spread Spectrum system (주파수도약 대역확산시스템을 위한 디지털 위상고정루프의 설계 및 성능분석)

  • Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1103-1108
    • /
    • 2010
  • In this paper, Frequency Synthesizer which is widely used for FH-SS system is proposed and the experimental results are analyzed. The performance of the DPLL(Digital Phase-Locked-Loop), which is the main part of the Synthesizer is analyzed by the computer program. Using Maxplus-II tool provided by altera. co., ltd, each part of the DPLL is designed and all of them is integrated into EPM7064SLC44-10 chip. And the simulation results are compared with the characteristics of the implemented circuits for analysis. And the experiential results show that the N value of the loop filter is toggled to adjacent N value, which result in phase jitter of the output. It can be resolved by increasing DCO(Digital Controlled oscillator) clock rate.