• Title/Summary/Keyword: PLL

Search Result 951, Processing Time 0.025 seconds

PLL-type Position Control of Step Motors (스텝모터의 PLL 타입 위치제어)

  • Kim, Chang-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.69-77
    • /
    • 2012
  • We propose a PLL-type position control method for step motors. Our control method considerably improves the instability problem at rapid acceleration or deceleration, which is a major problem of conventional open loop control methods. Moreover, our controller reduces the steady state position error to zero and guarantees lower vibration and acoustic noise at high speed. Also, our controller can produce more torque at high speed, and hence it can extend the controllable velocity range. To demonstrate the practical significance of our control method, we present some simulation results for a commercially available step motor using Simulink.

An In-Band Noise Filtering 32-tap FIR-Embedded ΔΣ Digital Fractional-N PLL

  • Lee, Jong Mi;Jee, Dong-Woo;Kim, Byungsub;Park, Hong-June;Sim, Jae-Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.3
    • /
    • pp.342-348
    • /
    • 2015
  • This paper presents a 1.9-GHz digital ${{\Delta}{\Sigma}}$ fractional-N PLL with a finite impulse response (FIR) filter embedded for noise suppression. The proposed digital implementation of FIR provides a simple method of increasing the number of taps without complicated calculation for gain matching. This work demonstrates 32 tap FIR filtering for the first time and successfully filtered the in-band phase noise generated from delta-sigma modulator (DSM). Design considerations are also addressed to find the optimum number of taps when the resolution of time-to-digital converter (TDC) is given. The PLL, fabricated in $0.11-{\mu}m$ CMOS, achieves a well-regulated in-band phase noise of less than -100 dBc/Hz for the entire range inside the bandwidth of 3 MHz. Compared with the conventional dual-modulus division, the proposed PLL shows an overall noise suppression of about 15dB both at in-band and out-of-band region.

An Available Capacitance Increasing PLL with Two Voltage Controlled Oscillator Gains (두 개의 이득 값을 가지는 전압제어발진기를 이용하여 유효 커패시턴스를 크게 하는 위상고정루프)

  • Jang, Hee-Seung;Choi, Young-Shig
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.82-88
    • /
    • 2014
  • An available capacitance increasing phase-locked loop(PLL) with two voltage controlled oscillator gains has been proposed. In this paper, the available capacitance of loop filter is increased by using two positive/negative gains of voltage controlled oscillator (VCO). It results in 1/10 reduction in the size of loop filter capacitor. It has been designed with a 1.8V $0.18{\mu}m$ CMOS process. The simulation results show that the proposed PLL has the same phase noise characteristic and a locking time of conventional PLL.

Phase Locked Loop based Time Synchronization Algorithm for Telemetry System (텔레메트리 시스템을 위한 PLL 기반의 시각동기 알고리즘)

  • Kim, Geon-Hee;Jin, Mi-Hyun;Kim, Bok-Ki
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.285-290
    • /
    • 2020
  • This paper presents a time synchronization algorithm based on PLL for application to telemetry systems and implement FPGA logic. The large aircraft of the telemetry system acquires status information through each distributed acquisition devices and analyzes the flight status in real time. For this reason, time synchronization between systems is important to improve precision. This paper presents a PLL based time synchronization algorithm that is less complex than other time synchronization methods and takes less time to process data because there is minimized message transmission for synchronization. The validity of proposed algorithm is proved by simulation of Python. And the VHDL logic was implemented in FPGA to check the time synchronization performance.

A Study on High Resolution Time to Digital Converter for All Digital PLL (디지털 PLL을 위한 높은 해상도를 갖는 시간-디지털 변환기의 연구)

  • Kim, Yong-Woo;Ahn, Tae-Won;Moon, Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.587-588
    • /
    • 2008
  • Digital PLL을 위한 높은 해상도를 갖는 TDC(Time to Digital Converter)를 $0.18{\mu}m$ CMOS 공정으로 설계하였다. 2단 구조를 갖는 TDC를 제안하였고 이를 Cadence Spectre를 이용하여 검증하였다. TDC는 Difference pulse generator, coarse 변환기와 fine 변환기로 구성된다. 그리고, 2단 변환기와 Thermometer decoder를 이용하여 delay cell의 수를 적게 유지하면서도 높은 해상도를 얻을 수 있었다.

  • PDF

Design and Fabrication of Low Phase-Noise Frequency Synthesizer using Dual Loop PLL for IMT-2000 (이중루프 PLL을 이용한 IMT-2000용 저위상잡음 주파수합성기의 설계 및 제작)

  • 김광선;최현철
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.163-166
    • /
    • 1999
  • In this paper, frequency synthesizer that can be used in IMT-2000 was designed and fabricated using dual loop PLL(Phase Locked Loop). For improving phase noise characteristic Voltage Controlled Oscillator was fabricated using coaxial resonator and eliminated frequency divider using SPD as phase detector and increased open loop gain. Fabricated frequency synthesizer had 1.82㎓ center frequency, 160MHz tuning range and -119.73㏈c/Hz low phase noise characteristic.

  • PDF

Design of CMOS Dual-Modulus Prescaler and Differential Voltage-Controlled Oscillator for PLL Frequency Synthesizer (PLL 주파수 합성기를 위한 dual-modulus 프리스케일러와 차동 전압제어발진기 설계)

  • Kang Hyung-Won;Kim Do-Kyun;Choi Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.179-182
    • /
    • 2006
  • This paper introduce a different-type voltage-controlled oscillator (VCO) for PLL frequency synthesizer, And also the architecture of a high speed low-power-consumption CMOS dual-modulus frequency divider is presented. It provides a new approach to high speed operation and low power consumption. The proposed circuits simulate in 0.35 um CMOS standard technology.

  • PDF

The Analysis of Characteristics for Digital PLL Control (디지털 PLL 제어의 특성 분석)

  • Kim Y.K.;Choi J.W.;Kim H.G.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.548-553
    • /
    • 2003
  • The frequency and phase angle of the utility voltage are important in many industrial systems. this paper present a detailed analysis of single-phase digital PLL control for utility connected systems. and its performance under utility conditions with noise is discussed. The experimental results demonstrate phase tracking capability in the single-phase grid-connected operation.

  • PDF

Digital PLL Control for Grid-Connected Photovoltaic System (계통 연계형 태양광 발전 시스템을 위한 디지털 PLL 제어)

  • Kim, Yong-Kyun;Choi, Jong-Woo;Kim, Heung-Geun;Lee, Dong-Choon;Choi, Young-Tae;Kim, Jin-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.327-330
    • /
    • 2003
  • The frequency and Phase angle of the utility voltage are important in many industrial systems. In this paper, the analysis and generalized approach of single-phase PLL control have been presented. The experimental results have been presented and demonstrated the feasibility of proposed methods.

  • PDF