• Title/Summary/Keyword: P-isometries

Search Result 12, Processing Time 0.054 seconds

POSETS ADMITTING THE LINEARITY OF ISOMETRIES

  • Hyun, Jong Youn;Kim, Jeongjin;Kim, Sang-Mok
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.999-1006
    • /
    • 2015
  • In this paper, we deal with a characterization of the posets with the property that every poset isometry of $\mathbb{F}^n_q$ fixing the origin is a linear map. We say such a poset to be admitting the linearity of isometries. We show that a poset P admits the linearity of isometries over $\mathbb{F}^n_q$ if and only if P is a disjoint sum of chains of cardinality 2 or 1 when q = 2, or P is an anti-chain otherwise.

WEAK NORMAL PROPERTIES OF PARTIAL ISOMETRIES

  • Liu, Ting;Men, Yanying;Zhu, Sen
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1489-1502
    • /
    • 2019
  • This paper describes when a partial isometry satisfies several weak normal properties. Topics treated include quasi-normality, subnormality, hyponormality, p-hyponormality (p > 0), w-hyponormality, paranormality, normaloidity, spectraloidity, the von Neumann property and Weyl's theorem.

SUPERCYCLICITY OF ℓp-SPHERICAL AND TORAL ISOMETRIES ON BANACH SPACES

  • Ansari, Mohammad;Hedayatian, Karim;Khani-Robati, Bahram
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.653-659
    • /
    • 2017
  • Let $p{\geq}1$ be a real number. A tuple $T=(T_1,{\ldots},T_n)$ of commuting bounded linear operators on a Banach space X is called an ${\ell}^p$-spherical isometry if ${\sum_{i=1}^{n}}{\parallel}T_ix{\parallel}^p={\parallel}x{\parallel}^p$ for all $x{\in}X$. The tuple T is called a toral isometry if each Ti is an isometry. By a result of Ansari, Hedayatian, Khani-Robati and Moradi, for every $n{\geq}1$, there is a supercyclic ${\ell}^2$-spherical isometric n-tuple on ${\mathbb{C}}^n$ but there is no supercyclic ${\ell}^2$-spherical isometry on an infinite-dimensional Hilbert space. In this article, we investigate the supercyclicity of ${\ell}^p$-spherical isometries and toral isometries on Banach spaces. Also, we introduce the notion of semicommutative tuples and we show that the Banach spaces ${\ell}^p$ ($1{\leq}p$ < ${\infty}$) support supercyclic ${\ell}^p$-spherical isometric semi-commutative tuples. As a result, all separable infinite-dimensional complex Hilbert spaces support supercyclic spherical isometric semi-commutative tuples.

DISCUSSIONS ON PARTIAL ISOMETRIES IN BANACH SPACES AND BANACH ALGEBRAS

  • Alahmari, Abdulla;Mabrouk, Mohamed;Taoudi, Mohamed Aziz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.485-495
    • /
    • 2017
  • The aim of this paper is twofold. Firstly, we introduce the concept of semi-partial isometry in a Banach algebra and carry out a comparison and a classification study for this concept. In particular, we show that in the context of $C^*$-algebras this concept coincides with the notion of partial isometry. Our results encompass several earlier ones concerning partial isometries in Hilbert spaces, Banach spaces and $C^*$-algebras. Finally, we study the notion of (m, p)-semi partial isometries.

ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS AND ROUGH ISOMETRIES

  • Kim, Seok-Woo;Lee, Yong-Hah
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.2
    • /
    • pp.277-287
    • /
    • 2007
  • We prove that if a graph G of bounded degree has finitely many p-hyperbolic ends($1) in which every bounded energy finite p-harmonic function is asymptotically constant for almost every path, then the set $\mathcal{HBD}_p(G)$ of all bounded energy finite p-harmonic functions on G is in one to one corresponding to $\mathbf{R}^l$, where $l$ is the number of p-hyperbolic ends of G. Furthermore, we prove that if a graph G' is roughly isometric to G, then $\mathcal{HBD}_p(G')$ is also in an one to one correspondence with $\mathbf{R}^l$.

STABILITY Of ISOMETRIES ON HILBERT SPACES

  • Jun, Kil-Woung;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.141-151
    • /
    • 2002
  • Let X and Y be real Banach spaces and $\varepsilon$, p $\geq$ 0. A mapping T between X and Y is called an ($\varepsilon$, p)-isometry if |∥T(x)-T(y)∥-∥x-y∥|$\leq$ $\varepsilon$∥x-y∥$^{p}$ for x, y$\in$X. Let H be a real Hilbert space and T : H longrightarrow H an ($\varepsilon$, p)-isometry with T(0) = 0. If p$\neq$1 is a nonnegative number, then there exists a unique isometry I : H longrightarrow H such that ∥T(x)-I(y)∥$\leq$ C($\varepsilon$)(∥x∥$^{ 1+p)/2}$+∥x∥$^{p}$ ) for all x$\in$H, where C($\varepsilon$) longrightarrow 0 as $\varepsilon$ longrightarrow 0.

GENERALIZED STABILITY OF ISOMETRIES ON REAL BANACH SPACES

  • Lee, Eun-Hwi;Park, Dal-Won
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.309-318
    • /
    • 2006
  • Let X and Y be real Banach spaces and ${\varepsilon}\;>\;0$, p > 1. Let f : $X\;{\to}\;Y$ be a bijective mapping with f(0) = 0 satisfying $$|\;{\parallel}f(x)-f(y){\parallel}-{\parallel}{x}-y{\parallel}\;|\;{\leq}{\varepsilon}{\parallel}{x}-y{\parallel}^p$$ for all $x\;{\in}\;X$ and, let $f^{-1}\;:\;Y\;{\to}\;X$ be uniformly continuous. Then there exist a constant ${\delta}\;>\;0$ and N(${\varepsilon},p$) such that lim N(${\varepsilon},p$)=0 and a unique surjective isometry I : X ${\to}$ Y satisfying ${\parallel}f(x)-I(x){\parallel}{\leq}N({\varepsilon,p}){\parallel}x{\parallel}^p$ for all $x\;{\in}\;X\;with\;{\parallel}x{\parallel}{\leq}{\delta}$.

GEOMETRIC CHARACTERIZATIONS OF CONCENTRATION POINTS FOR M$\"{O}$BIUS GROUPS

  • Sung Bok Hong;Jung Sook Sakong
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.4
    • /
    • pp.945-950
    • /
    • 1994
  • Although the study of the limit points of discrete groups of M$\ddot{o}$bius transformations has been a fertile area for many decades, there are some very natural topological properties of the limit points which appear not to have been previously examined. Let $\Gamma$ be a nonelementary discrete group of hyperbolic isometries acting on the Poincare disc $B^m, m \geq 2$, and let $p \in \partial B^m$ be a limit point of $\Gamma$. By a neighborhood of p, we will always mean an open neighborhood of p in $\partial B^m$.

  • PDF