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EXTENSION OF PHASE-ISOMETRIES BETWEEN THE UNIT

SPHERES OF ATOMIC Lp-SPACES FOR p > 0

Xujian Huang and Xihong Jin

Abstract. In this paper, we prove that for every surjective phase-iso-

metry between the unit spheres of real atomic Lp-spaces for p > 0, its
positive homogeneous extension is a phase-isometry which is phase equiv-

alent to a linear isometry.

1. Introduction

Let X and Y be real normed spaces. A mapping f : X → Y is called a
phase-isometry if f satisfies the functional equation

{‖f(x) + f(y)‖, ‖f(x)− f(y)‖} = {‖x+ y‖, ‖x− y‖} (x, y ∈ X).

Let us say that a mapping f : X → Y is phase equivalent to a linear isometry if
there exists a phase function ε : X → {−1, 1} such that εf is a linear isometry.
The notation of phase-isometry is linked to the famous Wigner’s theorem, which
plays a fundamental role in quantum mechanics and in representation theory
in physics. There are several equivalent formulations of Wigner’s theorem, see
[1,4,5,8,10,12] to list just some of them. The real version of Wigner’s theorem
[10] says that a mapping f : H → K satisfies the functional equation

|〈f(x), f(y)〉| = |〈x, y〉| (x, y ∈ H)

is phase equivalent to a linear isometry provided that H and K are real inner
product spaces. This is equivalent to saying that every phase-isometry from
the real inner product space H into K is phase equivalent to a linear isometry.
Recently, Huang and Tan [6] showed that every surjective phase-isometry be-
tween real atomic Lp-spaces for p > 0 is phase equivalent to a linear isometry,
which generalizes Wigner’s theorem to real atomic Lp-spaces for p > 0.

In 1987, D. Tingley [11] proposed the following question: Let f be a surjec-
tive isometry between the unit spheres SX and SY of real normed spaces X
and Y , respectively. Is it true that f : SX → SY extends to a linear isometry
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F : X → Y of the corresponding spaces? This problem is known as the Tingly’s
problem or isometric extension problem. We refer the reader to the introduc-
tion of [9] for more information and recent development on this problem. The
survey of Ding [3] is one of the good references for understanding the history
of the problem. Let us consider the natural positive homogeneous extension F
of f , where F is given by

F (x) =

‖x‖f(
x

‖x‖
), if x 6= 0,

0, if x = 0.
(1)

Then Tingley’s problem can be solved in positive for pairs (X,Y ) if and only if
the natural positive homogeneous extension F is a (linear) isometry. Inspired
by Tingly’s problem, it is natural to ask the following question:

Problem 1.1. Let f be a surjective phase-isometry between the unit spheres
SX and SY of real normed spaces X and Y , respectively. Is it true that the
natural positive homogeneous extension F is a phase-isometry?

In this paper, we answer Problem 1.1 in positive for real atomic Lp-spaces
for p > 0. That is for every phase-isometry from the unit sphere Slp(Γ) onto
Slp(∆) of real atomic Lp-spaces for p > 0, the natural positive homogeneous
extension is phase equivalent to a linear isometry, and therefore actually a
phase-isometry. We also show that Problem 1.1 is solved in positive for real
inner product spaces.

2. Results

We first discuss the phase-isometric extension problem on real inner product
spaces and show that Problem 1.1 is solved in positive for such spaces.

Proposition 2.1. Let H and K be inner product spaces, and let f : SH → SK
be a phase-isometry. Then the positive homogeneous extension F of f is a
phase-isometry.

Proof. Since H and K are inner product spaces, by the polarization identity,
we have

〈x, y〉 =
1

4
(‖x+ y‖2 − ‖x− y‖2),

〈f(x), f(y)〉 =
1

4
(‖f(x) + f(y)‖2 − ‖f(x)− f(y)‖2)

for all x, y ∈ SH . By the assumption of f , we have |〈f(x), f(y)〉| = |〈x, y〉| for
all x, y ∈ SH . Hence,

|〈F (x), F (y)〉| = |〈‖x‖f(
x

‖x‖
), ‖y‖f(

y

‖y‖
)〉|

= ‖x‖‖y‖|〈f(
x

‖x‖
), f(

y

‖y‖
)〉| = |〈x, y〉|
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for all x, y ∈ H with x, y 6= 0. It follows from Wigner’s Theorem that F is
phase equivalent to a linear isometry, and this completes the proof. �

Recall that every real atomic Lp-space for p > 0 is linearly isometric to lp(Γ)
for some nonempty index set Γ, that is,

lp(Γ) = {x =
∑
γ∈Γ

ξγeγ : ‖x‖ = (
∑
γ∈Γ

|ξγ |p)
1
p <∞, ξγ ∈ R}.

The unit sphere of lp(Γ) is {x ∈ lp(Γ) : ‖x‖ = 1} and is denoted by Slp(Γ). For
every x =

∑
γ∈Γ ξγeγ ∈ lp(Γ), we denote the support of x by Γx, i.e.,

Γx = {γ ∈ Γ : ξγ 6= 0}.
Then x can be rewritten in the form x =

∑
γ∈Γx

ξγeγ ∈ lp(Γ). For x, y ∈ lp(Γ),

we use the symbol xy = 0 to represent Γx ∩ Γy = ∅. It is well-known that
xy = 0 if and only if ‖x + y‖ = ‖x − y‖ for all x, y ∈ l2(Γ). We also need the
following well-known result which can be found from [7, Corollary 2.1] (noting
that Banach used it in his book [2] already). The statement is that xy = 0 if
and only if ‖x+y‖p+‖x−y‖p = 2(‖x‖p+‖y‖p) for all x, y ∈ lp(Γ) with p > 0,
p 6= 2. By this one can conclude the following result.

Lemma 2.2. Let X = lp(Γ) and Y = lp(∆) for p > 0. Suppose that f :
SX → SY is a phase-isometry. Then xy = 0 if and only if f(x)f(y) = 0 for all
x, y ∈ SX .

Our next lemma will show that every surjective phase-isometry between the
unit spheres of real atomic Lp-space for p > 0 necessarily maps antipodal points
to antipodal points. So the positive homogeneous extension is homogeneous
for the negative scalars as well.

Lemma 2.3. Let X = lp(Γ) and Y = lp(∆) for p > 0. Suppose that f : SX →
SY is a surjective phase-isometry. Then f is injective and f(−x) = −f(x)
for every x ∈ SX . Moreover, for every γ ∈ Γ, there exists δ ∈ ∆ such that
f(eγ) = ±eδ.

Proof. Let us take x ∈ SX . Since f is surjective, we can pick y ∈ SX such that
f(y) = −f(x). Notice that f is a phase-isometry, we have

{‖x+ y‖, ‖x− y‖} = {‖f(x) + f(y)‖, ‖f(x)− f(y)‖} = {0, 2}
which implies that y = ±x. If y = x, then f(x) = f(y) = −f(x), which is
impossible. Hence we get y = −x and so f(−x) = −f(x). On the other hand,
suppose that f(z) = f(x) for some z ∈ SX . By the assumption of f , we have

{‖x+ z‖, ‖x− z‖} = {‖f(x) + f(z)‖, ‖f(x)− f(z)‖} = {2, 0}.
This means that z = x and f is injective.

We will prove the “moreover” part. Let δ be in the support of f(eγ) and
pick x ∈ SX such that f(x) = eδ. Applying Lemma 2.2 we have

eγeγ′ = 0⇒ f(eγ)f(eγ′) = 0⇒ f(x)f(eγ′) = 0⇒ xeγ′ = 0
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for all γ′ ∈ Γ with γ′ 6= γ. It follows that x = ±eγ , and so f(eγ) = ±eδ. �

Now we derive the representation theorem of surjective phase-isometries be-
tween the unit spheres of real atomic Lp-spaces for p > 0, p 6= 2.

Theorem 2.4. Let X = lp(Γ) and Y = lp(∆) for p > 0, p 6= 2. Suppose that
f : SX → SY is a surjective phase-isometry. Then for every x =

∑
γ∈Γ ξγeγ ∈

SX , we have f(x) =
∑
γ∈Γ ηγf(eγ), where |ξγ | = |ηγ | for all γ ∈ Γ.

Proof. Let x be in SX and write x =
∑
γ∈Γx

ξγeγ , where
∑
γ∈Γx

|ξγ |p = 1 and
ξγ 6= 0 for all γ ∈ Γx. According to Lemma 2.3, we can set

M := {δ ∈ ∆ : f(eγ) = ±eδ, ∀γ ∈ Γx}.

Choose y ∈ SX such that f(y) = eδ for some δ ∈ ∆ \M . Applying Lemma 2.2,
we have

f(eγ)f(y) = 0⇒ eγy = 0⇒ xy = 0⇒ f(x)f(y) = f(x)eδ = 0

for all γ ∈ Γx. Thus we can write f(x) =
∑
γ∈Γx

ηγf(eγ), where
∑
γ∈Γx

|ηγ |p =
1. By the assumption of f ,

‖f(x) + f(eγ)‖p + ‖f(x)− f(eγ)‖p

= ‖x+ eγ‖p + ‖x− eγ‖p

= 1− |ξγ |p + |ξγ + 1|p + 1− |ξγ |p + |ξγ − 1|p

= |1 + ξγ |p + |1− ξγ |p − 2|ξγ |p + 2.

On the other hand,

‖f(x) + f(eγ)‖p + ‖f(x)− f(eγ)‖p

= 1− |ηγ |p + |ηγ + 1|p + 1− |ηγ |p + |ηγ − 1|p

= |1 + ηγ |p + |1− ηγ |p − 2|ηγ |p + 2.

It follows that

|1 + ξγ |p + |1− ξγ |p − 2|ξγ |p = |1 + ηγ |p + |1− ηγ |p − 2|ηγ |p.

Notice that the function ϕ(t) = (1 + t)p + (1 − t)p − 2tp is strictly decreasing
(increasing) on [0, 1] for 0 < p < 2 (p > 2) (Here, we need the fact that
(s + r)p < sp + rp for 0 < p < 1 and (s + r)p > sp + rp for p > 1 whenever
s, r > 0). Consequently, we obtain |ξγ | = |ηγ | for all γ ∈ Γx. �

Our next results are devoted to determining the behaviour of surjective
phase-isometries between the unit spheres of real atomic Lp-spaces for p > 0,
p 6= 2 on vectors which are linear combinations of two zero-product norm-one
vectors.
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Lemma 2.5. Let X = lp(Γ) and Y = lp(∆) for p > 0, p 6= 2. Suppose that
f : SX → SY is a surjective phase-isometry. Let x, y ∈ SX with xy = 0 and
λ ∈ R. Then there exist two real numbers α, β with |α| = |β| = 1 such that

‖x+ λy‖f
(

x+ λy

‖x+ λy‖

)
= αf(x) + βλf(y).

Proof. Suppose that x =
∑
γ∈Γx

ξγeγ and y =
∑
γ∈Γy

ηγeγ , and that 0 6= λ ∈
R. By Theorem 2.4 we can write

f(x) =
∑
γ∈Γx

ξ′γf(eγ), f(y) =
∑
γ∈Γy

η′γf(eγ),

‖x+ λy‖f
(

x+ λy

‖x+ λy‖

)
=
∑
γ∈Γx

ξ′′γf(eγ) + λ
∑
γ∈Γy

η′′γf(eγ),

where |ξ′γ | = |ξ′′γ | = |ξγ | and |η′γ | = |η′′γ | = |ηγ | for all γ ∈ Γx ∪ Γy. To

simplify the writing, we take A = 1
‖x+λy‖ = 1

(1+|λ|p)
1
p

. Since f is a phase-

isometry,

{(A+ 1)p + (A|λ|)p, (1−A)p + (A|λ|)p}

=

{∥∥∥∥ x+ λy

‖x+ λy‖
+ x

∥∥∥∥p ,∥∥∥∥ x+ λy

‖x+ λy‖
− x
∥∥∥∥p}

=

{∥∥∥∥f ( x+ λy

‖x+ λy‖

)
+ f(x)

∥∥∥∥p ,∥∥∥∥f ( x+ λy

‖x+ λy‖

)
− f(x)

∥∥∥∥p}

=

∑
γ∈Γx

|Aξ′′γ + ξ′γ |p + (A|λ|)p,
∑
γ∈Γx

|Aξ′′γ − ξ′γ |p + (A|λ|)p
 .

This shows that

(A+ 1)p ∈

∑
γ∈Γx

|Aξ′′γ + ξ′γ |p,
∑
γ∈Γx

|Aξ′′γ − ξ′γ |p
 .

Notice that ∑
γ∈Γx

|Aξ′′γ ± ξ′γ |p ≤
∑
γ∈Γx

(|Aξ′′γ |+ |ξ′γ |)p = (A+ 1)p.

Then we obtain ξ′′γ = ξ′γ for all γ ∈ Γx, or ξ′′γ = −ξ′γ for all γ ∈ Γx. It follows
that

∑
γ∈Γx

ξ′′γeγ = ±f(x). Similar argument yields
∑
γ∈Γy

η′′γeγ = ±f(y).

The proof is complete. �

In [13] Wang proved that for every surjective isometry between unit spheres
of real atomic Lp-spaces for p > 0, p 6= 2, its natural positive homogeneous
extension is a linear isometry on the whole space. By this result, we are now
ready to present main result of this paper.
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Theorem 2.6. Let X = lp(Γ) and Y = lp(∆) for p > 0. Suppose that f :
SX → SY is a surjective phase-isometry. Then the positive extension F of f
is phase equivalent to a linear isometry.

Proof. Proposition 2.1 proves the case p = 2. We need only consider the case
p > 0, p 6= 2. Set Z := {x ∈ X : xeγ0 = 0} and W := {w ∈ Y : wf(eγ0) = 0}
for some γ0 ∈ Γ. It is not hard to check that SX = { z+λeγ0

‖z+λeγ0‖
: z ∈ SZ , λ ∈

R} ∪ {±eγ0}. By Lemma 2.5 we can write

‖z + λeγ0‖f
(

z + λeγ0
‖z + λeγ0‖

)
= α(z, λ)f(z) + β(z, λ)λf(eγ0),

|α(z, λ)| = |β(z, λ)| = 1

for all z ∈ SZ and λ ∈ R. Define a mapping g : SX → SY as follows:

g(eγ0) = f(eγ0), g(−eγ0) = −f(eγ0), g(z) = α(z, 1)β(z, 1)f(z),

‖z + λeγ0‖g
(

z + λeγ0
‖z + λeγ0‖

)
= α(z, λ)β(z, λ)f(z) + λf(eγ0)

for all z ∈ SZ and 0 6= λ ∈ R. Then g is a phase-isometry, which is phase
equivalent to f . Since f(SZ) = SW by Theorem 2.4, we deduce that g(SZ) ⊂
SW .

Next, we will show that g|SZ : SZ → SW is a surjective isometry. Let us
take z ∈ SZ and 0 6= λ ∈ R. Set A := 1

‖z+eγ0‖
and B := 1

‖z+λeγ0‖
. Since g is a

phase-isometry,

{|A+B|p + |A+Bλ|p, |A−B|p + |A−Bλ|p}

=

{∥∥∥∥ z+eγ0
‖z+eγ0‖

+
z+λeγ0
‖z+λeγ0‖

∥∥∥∥p ,∥∥∥∥ z+eγ0
‖z+eγ0‖

− z+|λeγ0
‖z+λeγ0‖

∥∥∥∥p}
=

{∥∥∥∥g( z+eγ0
‖z+eγ0‖

)
+g

(
z+λeγ0
‖z+λeγ0‖

)∥∥∥∥p ,∥∥∥∥g( z+eγ0
‖z + eγ0‖

)
−g
(

z+λeγ0
‖z+λeγ0‖

)∥∥∥∥p}
= {|Aα(z, 1)β(z, 1) +Bα(z, λ)β(z, λ)|p + |A+Bλ|p,
|Aα(z, 1)β(z, 1)−Bα(z, λ)β(z, λ)|p + |A−Bλ|p}.

If α(z, 1)β(z, 1) = −α(z, λ)β(z, λ), then

{|A−B|p + |A+Bλ|p, |A+B|p + |A−Bλ|p}
= {|A+B|p + |A+Bλ|p, |A−B|p + |A−Bλ|p}.

This leads to a contradiction for λ 6= 0. It follows that α(z, 1)β(z, 1) =
α(z, λ)β(z, λ), and hence

‖z + λeγ0‖g(
z + λeγ0
‖z + λeγ0‖

) = g(z) + λg(eγ0)

for all z ∈ SZ and λ ∈ R. Let z1, z2 be in SZ and λ > ‖z1 − z2‖/2. Clearly,

1

1 + λp
{‖g(z1) + g(z2)‖p + (2λ)p, ‖g(z1)− g(z2)‖p}
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=

{∥∥∥∥g( z1+λeγ0
‖z1+λeγ0‖

)
+g

(
z2+λeγ0
‖z2+λeγ0‖

)∥∥∥∥p ,∥∥∥∥g( z1+λeγ0
‖z1+λeγ0‖

)
−g
(

z2+λeγ0
‖z2+λeγ0‖

)∥∥∥∥p}
=

{∥∥∥∥ z1+λeγ0
‖z1+λeγ0‖

+
z2+λeγ0
‖z2+λeγ0‖

∥∥∥∥p ,∥∥∥∥ z1+λeγ0
‖z1+λeγ0‖

− z2+λeγ0
‖z2+λeγ0‖

∥∥∥∥p}
=

1

1 + λp
{‖z1 + z2‖p + (2λ)p, ‖z1 − z2‖p}.

This implies that ‖g(z1)− g(z2)‖ = ‖z1 − z2‖ for all z1, z2 ∈ SZ . On the other
hand,

1

2
{‖g(z) + g(−z)‖p, ‖g(z)− g(−z)‖p + 2p}

=

{∥∥∥∥g( z + eγ0
‖z + eγ0‖

)
+g

(
−z − eγ0
‖z + eγ0‖

)∥∥∥∥p ,∥∥∥∥g( z + eγ0
‖z + eγ0‖

)
−g
(
−z − eγ0
‖z + eγ0‖

)∥∥∥∥p}
=

{∥∥∥∥ z + eγ0
‖z + eγ0‖

+
−z − eγ0
‖z + eγ0‖

∥∥∥∥p ,∥∥∥∥ z + eγ0
‖z + eγ0‖

− −z − eγ0
‖z + eγ0‖

∥∥∥∥p}
=

1

2
{0, 2p}

for all z ∈ SZ . This shows that g(−z) = −g(z) for all z ∈ SZ . Since g is phase
equivalent to f , we see that g|SZ : SZ → SW is a surjective isometry.

Finally, we prove that F is phase equivalent to a linear isometry. Since the
natural positive homogeneous extension G of g is phase equivalent to F , it is
suffices to showing that G : X → Y is a linear isometry. By Lemma 2.3, we
have f(eγ0) = ±eδ0 for some δ0 ∈ ∆. It is easily verified that Z and W are
linearly isometric to lp(Γ \ {γ0}) and lp(∆ \ {δ0}) respectively. From Wang’s

result [13], the restriction of G to Z is a linear isometry. Set x := z
‖z‖ +

λeγ0
‖z‖

for some 0 6= z ∈ Z and λ ∈ R. It follows that

G(z + λeγ0)= ‖z‖‖x‖g
(

x

‖x‖

)
= ‖z‖

(
g

(
z

‖z‖

)
+
λg(eγ0)

‖z‖

)
= G(z) + λg(eγ0).

This shows that G : X → Y is a linear isometry, which completes the proof. �
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