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EXTENSION OF PHASE-ISOMETRIES BETWEEN THE UNIT
SPHERES OF ATOMIC L,-SPACES FOR p >0

XUJIAN HUANG AND XIHONG JIN

ABSTRACT. In this paper, we prove that for every surjective phase-iso-
metry between the unit spheres of real atomic Ly-spaces for p > 0, its
positive homogeneous extension is a phase-isometry which is phase equiv-
alent to a linear isometry.

1. Introduction

Let X and Y be real normed spaces. A mapping f : X — Y is called a
phase-isometry if f satisfies the functional equation

7@+ Wl 1) = FOIY =z +yll e =yl (29 € X).

Let us say that a mapping f : X — Y is phase equivalent to a linear isometry if
there exists a phase function ¢ : X — {—1,1} such that ef is a linear isometry.
The notation of phase-isometry is linked to the famous Wigner’s theorem, which
plays a fundamental role in quantum mechanics and in representation theory
in physics. There are several equivalent formulations of Wigner’s theorem, see
[1,4,5,8,10,12] to list just some of them. The real version of Wigner’s theorem
[10] says that a mapping f : H — K satisfies the functional equation

[(F(@), f) = [z, 9)] (2,y € H)

is phase equivalent to a linear isometry provided that H and K are real inner
product spaces. This is equivalent to saying that every phase-isometry from
the real inner product space H into K is phase equivalent to a linear isometry.
Recently, Huang and Tan [6] showed that every surjective phase-isometry be-
tween real atomic L,-spaces for p > 0 is phase equivalent to a linear isometry,
which generalizes Wigner’s theorem to real atomic L,-spaces for p > 0.

In 1987, D. Tingley [11] proposed the following question: Let f be a surjec-
tive isometry between the unit spheres Sx and Sy of real normed spaces X
and Y, respectively. Is it true that f : Sx — Sy extends to a linear isometry
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F : X — Y of the corresponding spaces? This problem is known as the Tingly’s
problem or isometric extension problem. We refer the reader to the introduc-
tion of [9] for more information and recent development on this problem. The
survey of Ding [3] is one of the good references for understanding the history
of the problem. Let us consider the natural positive homogeneous extension F’
of f, where F is given by

x

[l £

W Fla) = E R

0, if z=0.

Then Tingley’s problem can be solved in positive for pairs (X,Y") if and only if
the natural positive homogeneous extension F' is a (linear) isometry. Inspired
by Tingly’s problem, it is natural to ask the following question:

Problem 1.1. Let f be a surjective phase-isometry between the unit spheres
Sx and Sy of real normed spaces X and Y, respectively. Is it true that the
natural positive homogeneous extension F' is a phase-isometry?

In this paper, we answer Problem 1.1 in positive for real atomic L,-spaces
for p > 0. That is for every phase-isometry from the unit sphere S ) onto
Si,(a) of real atomic LP-spaces for p > 0, the natural positive homogeneous
extension is phase equivalent to a linear isometry, and therefore actually a
phase-isometry. We also show that Problem 1.1 is solved in positive for real
inner product spaces.

2. Results

We first discuss the phase-isometric extension problem on real inner product
spaces and show that Problem 1.1 is solved in positive for such spaces.

Proposition 2.1. Let H and K be inner product spaces, and let f : Sy — Sk
be a phase-isometry. Then the positive homogeneous extension F of f is a
phase-isometry.

Proof. Since H and K are inner product spaces, by the polarization identity,
we have

1
(@y) = (e +yll* = = = yl),

(f(x), f(y)) = %(Ilf(w) +fWIP = 1) = FWI?)

for all z,y € Sy. By the assumption of f, we have |(f(x), f(y))| = [{x,y)| for
all z,y € Sy. Hence,
Y
)yl f (o)l

[(F(x), F(y))| = [l £( Iyl

|
= |z — YW =z
= ll=[[llyll1{f( ‘m||)7f(||y||)>| (2, )|

T
]
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for all x,y € H with z,y # 0. It follows from Wigner’s Theorem that F' is
phase equivalent to a linear isometry, and this completes the proof. O

Recall that every real atomic L,-space for p > 0 is linearly isometric to ,(I")
for some nonempty index set I', that is,

1
L) ={z =2 &ey:llz] = (O 6177 <oo, & €R}.
~ver ~yel
The unit sphere of [,(T') is {x € [,(I') : ||z|| = 1} and is denoted by S (ry. For
every & = Z'yer &vey € 1,(T), we denote the support of x by I'y, i.e.,

Iy ={yel:¢& #0}

Then z can be rewritten in the form x =} . &yey € [,(I'). For 2,y € I,(I),
we use the symbol zy = 0 to represent I'; NI’y = 0. It is well-known that
zy = 0 if and only if ||z + y| = ||z — y| for all x,y € l5(I"). We also need the
following well-known result which can be found from [7, Corollary 2.1] (noting
that Banach used it in his book [2] already). The statement is that xy = 0 if
and only if ||z +y||P + ||z — y||? = 2(||z||” + ||y||?) for all z,y € 1,(T") with p > 0,
p # 2. By this one can conclude the following result.

Lemma 2.2. Let X = [,(I') and Y = [,(A) for p > 0. Suppose that f :
Sx — Sy is a phase-isometry. Then zy = 0 if and only if f(x)f(y) =0 for all
T,y € Sx.

Our next lemma will show that every surjective phase-isometry between the
unit spheres of real atomic L,-space for p > 0 necessarily maps antipodal points

to antipodal points. So the positive homogeneous extension is homogeneous
for the negative scalars as well.

Lemma 2.3. Let X ={,(T") and Y =1,(A) for p > 0. Suppose that f : Sx —
Sy is a surjective phase-isometry. Then f is injective and f(—xz) = —f(x)
for every x € Sx. Moreover, for every v € T, there exists § € A such that
fley) = Les.

Proof. Let us take z € Sx. Since f is surjective, we can pick y € Sx such that
fly) = —f(z). Notice that f is a phase-isometry, we have

{llz+yll, lle =yl = {Ilf (@) + FWI, 1/ (@) = f)l} = {0,2}
which implies that y = +z. If y = z, then f(z) = f(y) = —f(z), which is
impossible. Hence we get y = —x and so f(—z) = —f(x). On the other hand,
suppose that f(z) = f(x) for some z € Sx. By the assumption of f, we have

{lz + Il lz = 21} = {llf (=) + ) [1f(x) = F(2)II} = {2,0}.
This means that z = z and f is injective.
We will prove the “moreover” part. Let § be in the support of f(e,) and
pick € Sx such that f(z) = es. Applying Lemma 2.2 we have

evey = 0= f(ey)fley) =0= f(x)f(ey) =0= 2y =0
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for all v/ € T with 4/ # ~. It follows that z = +e,, and so f(ey) = *es. O

Now we derive the representation theorem of surjective phase-isometries be-
tween the unit spheres of real atomic L,-spaces for p > 0, p # 2.

Theorem 2.4. Let X = [,(T') and Y = [,(A) forp >0, p # 2. Suppose that
f:Sx — Sy is a surjective phase-isometry. Then for every x = Z’yEF §vey €
Sx, we have f(x) =3 cpnyfley), where |&| = |ny| for all v € T

Proof. Let x be in Sx and write z = Y. &ye,, where > [P =1 and
&, # 0 for all v € I';. According to Lemma 2.3, we can set

M:={0€A: fley) = Les, Vy e}

Choose y € Sx such that f(y) = es for some 6 € A\ M. Applying Lemma 2.2,
we have

fley)fly) =0=ey=0=a2y=0= f(z)f(y) = f(x)es =0

for all v € I';. Thus we can write f(z) = > 1y f(ey), where 3°_ . |n, [P =
1. By the assumption of f,

1f () + el +[1f (=) = flex)]?
= llz+ell” + llz —eql?
=1 [P+ 6 1P +1 - &P + 16 — 1P
=[1+&P+ 11 -&[7 =267 +2.
On the other hand,

1 f(z) + fle)|” +[[f(z) — fles)]I
=1—|ny "+ [y + 1P+ 1= |ny|" + [0y — 1/
=1 +777|p + 1~ 77"/|p - 2‘777|p + 2.

It follows that
11 _1_57‘19 + |1 - §v|p - 2\@\1’ = |1 +77v‘p +[1 - 777|p - 2|77v‘p-

Notice that the function ¢(t) = (1 4 )P + (1 — )P — 2¢P is strictly decreasing
(increasing) on [0,1] for 0 < p < 2 (p > 2) (Here, we need the fact that
(s+7)P <sP+rPfor0<p<1and (s+7)? > sP+rP for p > 1 whenever
s, > 0). Consequently, we obtain |&,| = |n,| for all v € T'. O

Our next results are devoted to determining the behaviour of surjective
phase-isometries between the unit spheres of real atomic L,-spaces for p > 0,
p # 2 on vectors which are linear combinations of two zero-product norm-one
vectors.
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Lemma 2.5. Let X = [,(T') and Y = [,(A) for p > 0, p # 2. Suppose that
f:Sx — Sy is a surjective phase-isometry. Let x,y € Sx with xy = 0 and
A € R. Then there exist two real numbers a,  with |a| = |G| =1 such that

T+ Ay
[z + Ayl
Proof. Suppose that x = Zverz &vey and y = Zvel“y Nyey, and that 0 # X €
R. By Theorem 2.4 we can write

2)= Y& fley), fly)= > 0 fley),

o+ Ml f ( ) — af() + BAI(y).

~vel, yel'y
r+ Ay 1 7
o+ 2llf (o ym ) = 2o € e +2 2 (),
Y V€l vEDy
where [¢' = |€",] = 16 and || = || = || for all y € T, UT,. To
simplify the writing, we take A = = L. Since f is a phase-
T (1+IAI2) 7
isometry,
{(A+1)7+ (AN, (1= A)P + (A[A])P}
{‘ T4+ Ay Pl z+ My p}
= | —x
T+l [l + Ayll
T+ Ay P T+ Ay P
() )
Ur () ol s () - 70

= Z |A§N’y + 5/7|p + (A|)\|)p7 Z ‘ASH'\/ - gl’y‘p + (A')\Dp

yel, yel'y

This shows that

(A+1Peq Y A+ P, Y A", ¢

YET: Y€l

Notice that
ST A, £ < ST (A | 1€, = (A4 1),

yel', Y€l
Then we obtain ¢, = ¢’ forally € Iy, or §" = —¢' forall y € T',.. Tt follows
that > . & ey = £f(z). Similar argument yields Zwery n' ey = £f(y)-
The proof is complete. O

In [13] Wang proved that for every surjective isometry between unit spheres
of real atomic Ly-spaces for p > 0, p # 2, its natural positive homogeneous
extension is a linear isometry on the whole space. By this result, we are now
ready to present main result of this paper.
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Theorem 2.6. Let X = [,(I') and Y = [,(A) for p > 0. Suppose that f :
Sx — Sy is a surjective phase-isometry. Then the positive extension F of f
is phase equivalent to a linear isometry.

Proof. Proposition 2.1 proves the case p = 2. We need only consider the case

p>0,p#2 Set Z:={x e X :ze,, =0} and W :={w e Y :wf(ey) =0}

for some vy € T'. It is not hard to check that Sx = {uiiizﬁu 1z € Sz, €

R} U {+e,, }. By Lemma 2.5 we can write

el (TR ) = e N FE) + e DA ()
la(z, M) = 18(z, M) =1

for all z € Sz and A € R. Define a mapping g : Sx — Sy as follows:

glery) = fleyy),  g(—eyy) = =fleq),  9(2) = a(z,1)8(z,1) f(2),
o+ Al (5020 ) = (e VAN + Afler)

for all z € Sz and 0 # A € R. Then g is a phase-isometry, which is phase
equivalent to f. Since f(Sz) = Sw by Theorem 2.4, we deduce that g(Sz) C
Sw .

Next, we will show that ¢g|Sz : Sz — Sw is a surjective isometry. Let us
take z € Sz and 0 # A € R. Set A := and B := T Since g is a

1
llz+Xeyq
phase-isometry,
{|]A+ B|P+|A+ BMP,|A— B|’P + |A— B)P}

1
llz+exo |l

_{‘ Ztey zAeq [P || 2 teq _ Zt[Aey p}
lzt+esoll ~ llztAeso Il " lHIz4exo ]l [lz+Aeq |
P

)

1

Z+ey, ) ( Z4Aey, ) ( Z+ey, ) ( Z+ ey, )
=\ ) 9 o ol )9\
{H <||Z+€%|| ||Z-|—)\€%|| ||Z+670|| ||Z+>‘670||
— {[4a(z, 1)(2 1) + Ba(z, NB(z, )P + A+ BAP,
If a(z,1)8(2,1) = —a(z,A)B(z, A), then
{|A=B|P+|A+ BMP,|A+ B|’ + |A— BXAP}
={|A+ B +|A+ B\P,|A— B +|A - BA]P}.
This leads to a contradiction for A # 0. It follows that a(z,1)8(z,1) =
a(z,\)B(z, A), and hence
Z+ ey,
[ER R
for all z € Sz and A € R. Let 21,29 be in Sz and A > ||z1 — 22]|/2. Clearly,

{llg(z1) + g(22)|I” + (2A)", [|g(21) — g(22)[I”}

|2+ Aes [lg( ) = 9(2) + Ag(e,)

1
1+
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( z1+Aeq, >+ ( 2o+ Aeq, ) ( 21+ Aeq, ) ( Zo+Aeq, ) p}
|21+ e |l |22+ e |l |21+ e |l |22+ e |l
B {‘ z1+ ey, ot Aey, |I° z1+ ey, Zo+ ey, p}
1
EEEDE

[z1HAes0ll 22 +Aeq, | lor+Aeso | T2+ Aes, |
iz 2P+ 2N 2 — 2|}

This implies that ||g(z1) — g(22)|| = ||z1 — #2]| for all 21, 22 € Sz. On the other

hand,

*Wg) 9(=2)[1", llg(2) = g(=2)[I” + 27}

z+ e —z —e p z+ e —z —e
{H (|z+£°||)+9(||z+e”‘|’|) "g(|z+e%||)‘g<||z+e77|)
Yo Yo Yo Yo

p p
:{‘ Z+e“/0 —Z T Ey Z+e“{0 —Z T Ey }

[z 4 el N2+ eyl 24+ exll N2+ eyl

1 p
= 2{0.27)
for all z € Sz. This shows that g(—z) = —g(z) for all z € Sz. Since g is phase
equivalent to f, we see that g|Sz : Sz — Sw is a surjective isometry.

Finally, we prove that F' is phase equivalent to a linear isometry. Since the
natural positive homogeneous extension G of g is phase equivalent to F, it is
suffices to showing that G : X — Y is a linear isometry. By Lemma 2.3, we
have f(e,,) = *es, for some 6y € A. It is easily verified that Z and W are
linearly isometric to I,(I"\ {y0}) and [,(A \ {do}) respectively. From Wang’s

Aeqyg

result [13], the restriction of G to Z is a linear isometry. Set x : =11 T TR
for some 0 # z € Z and A € R. It follows that

6z +3er)= el (57 ) = Vel (3 () + 24522 ) = 6+ rgtens)

This shows that G : X — Y is a linear isometry, which completes the proof. [

p

-l

}
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