EXTENSION OF PHASE-ISOMETRIES BETWEEN THE UNIT SPHERES OF ATOMIC L_{p}-SPACES FOR $p>0$

Xujian Huang and Xihong Jin

Abstract

In this paper, we prove that for every surjective phase-isometry between the unit spheres of real atomic L_{p}-spaces for $p>0$, its positive homogeneous extension is a phase-isometry which is phase equivalent to a linear isometry.

1. Introduction

Let X and Y be real normed spaces. A mapping $f: X \rightarrow Y$ is called a phase-isometry if f satisfies the functional equation

$$
\{\|f(x)+f(y)\|,\|f(x)-f(y)\|\}=\{\|x+y\|,\|x-y\|\} \quad(x, y \in X)
$$

Let us say that a mapping $f: X \rightarrow Y$ is phase equivalent to a linear isometry if there exists a phase function $\varepsilon: X \rightarrow\{-1,1\}$ such that εf is a linear isometry. The notation of phase-isometry is linked to the famous Wigner's theorem, which plays a fundamental role in quantum mechanics and in representation theory in physics. There are several equivalent formulations of Wigner's theorem, see $[1,4,5,8,10,12]$ to list just some of them. The real version of Wigner's theorem [10] says that a mapping $f: H \rightarrow K$ satisfies the functional equation

$$
|\langle f(x), f(y)\rangle|=|\langle x, y\rangle| \quad(x, y \in H)
$$

is phase equivalent to a linear isometry provided that H and K are real inner product spaces. This is equivalent to saying that every phase-isometry from the real inner product space H into K is phase equivalent to a linear isometry. Recently, Huang and Tan [6] showed that every surjective phase-isometry between real atomic L_{p}-spaces for $p>0$ is phase equivalent to a linear isometry, which generalizes Wigner's theorem to real atomic L_{p}-spaces for $p>0$.

In 1987, D. Tingley [11] proposed the following question: Let f be a surjective isometry between the unit spheres S_{X} and S_{Y} of real normed spaces X and Y, respectively. Is it true that $f: S_{X} \rightarrow S_{Y}$ extends to a linear isometry

[^0]$F: X \rightarrow Y$ of the corresponding spaces? This problem is known as the Tingly's problem or isometric extension problem. We refer the reader to the introduction of [9] for more information and recent development on this problem. The survey of Ding [3] is one of the good references for understanding the history of the problem. Let us consider the natural positive homogeneous extension F of f, where F is given by
\[

F(x)=\left\{$$
\begin{array}{rll}
\|x\| f\left(\frac{x}{\|x\|}\right), & \text { if } & x \neq 0 \tag{1}\\
0, & \text { if } & x=0
\end{array}
$$\right.
\]

Then Tingley's problem can be solved in positive for pairs (X, Y) if and only if the natural positive homogeneous extension F is a (linear) isometry. Inspired by Tingly's problem, it is natural to ask the following question:

Problem 1.1. Let f be a surjective phase-isometry between the unit spheres S_{X} and S_{Y} of real normed spaces X and Y, respectively. Is it true that the natural positive homogeneous extension F is a phase-isometry?

In this paper, we answer Problem 1.1 in positive for real atomic L_{p}-spaces for $p>0$. That is for every phase-isometry from the unit sphere $S_{l_{p}(\Gamma)}$ onto $S_{l_{p}(\Delta)}$ of real atomic L^{p}-spaces for $p>0$, the natural positive homogeneous extension is phase equivalent to a linear isometry, and therefore actually a phase-isometry. We also show that Problem 1.1 is solved in positive for real inner product spaces.

2. Results

We first discuss the phase-isometric extension problem on real inner product spaces and show that Problem 1.1 is solved in positive for such spaces.
Proposition 2.1. Let H and K be inner product spaces, and let $f: S_{H} \rightarrow S_{K}$ be a phase-isometry. Then the positive homogeneous extension F of f is a phase-isometry.

Proof. Since H and K are inner product spaces, by the polarization identity, we have

$$
\begin{aligned}
& \langle x, y\rangle=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) \\
& \langle f(x), f(y)\rangle=\frac{1}{4}\left(\|f(x)+f(y)\|^{2}-\|f(x)-f(y)\|^{2}\right)
\end{aligned}
$$

for all $x, y \in S_{H}$. By the assumption of f, we have $|\langle f(x), f(y)\rangle|=|\langle x, y\rangle|$ for all $x, y \in S_{H}$. Hence,

$$
\begin{aligned}
|\langle F(x), F(y)\rangle| & =\left|\left\langle\|x\| f\left(\frac{x}{\|x\|}\right),\|y\| f\left(\frac{y}{\|y\|}\right)\right\rangle\right| \\
& =\|x\|\|y\| \|\left\langle f\left(\frac{x}{\|x\|}\right), f\left(\frac{y}{\|y\|}\right)\right\rangle|=|\langle x, y\rangle|
\end{aligned}
$$

for all $x, y \in H$ with $x, y \neq 0$. It follows from Wigner's Theorem that F is phase equivalent to a linear isometry, and this completes the proof.

Recall that every real atomic L_{p}-space for $p>0$ is linearly isometric to $l_{p}(\Gamma)$ for some nonempty index set Γ, that is,

$$
l_{p}(\Gamma)=\left\{x=\sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma}:\|x\|=\left(\sum_{\gamma \in \Gamma}\left|\xi_{\gamma}\right|^{p}\right)^{\frac{1}{p}}<\infty, \xi_{\gamma} \in \mathbb{R}\right\}
$$

The unit sphere of $l_{p}(\Gamma)$ is $\left\{x \in l_{p}(\Gamma):\|x\|=1\right\}$ and is denoted by $S_{l_{p}(\Gamma)}$. For every $x=\sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in l_{p}(\Gamma)$, we denote the support of x by Γ_{x}, i.e.,

$$
\Gamma_{x}=\left\{\gamma \in \Gamma: \xi_{\gamma} \neq 0\right\}
$$

Then x can be rewritten in the form $x=\sum_{\gamma \in \Gamma_{x}} \xi_{\gamma} e_{\gamma} \in l_{p}(\Gamma)$. For $x, y \in l_{p}(\Gamma)$, we use the symbol $x y=0$ to represent $\Gamma_{x} \cap \Gamma_{y}=\emptyset$. It is well-known that $x y=0$ if and only if $\|x+y\|=\|x-y\|$ for all $x, y \in l_{2}(\Gamma)$. We also need the following well-known result which can be found from [7, Corollary 2.1] (noting that Banach used it in his book [2] already). The statement is that $x y=0$ if and only if $\|x+y\|^{p}+\|x-y\|^{p}=2\left(\|x\|^{p}+\|y\|^{p}\right)$ for all $x, y \in l_{p}(\Gamma)$ with $p>0$, $p \neq 2$. By this one can conclude the following result.

Lemma 2.2. Let $X=l_{p}(\Gamma)$ and $Y=l_{p}(\Delta)$ for $p>0$. Suppose that f : $S_{X} \rightarrow S_{Y}$ is a phase-isometry. Then $x y=0$ if and only if $f(x) f(y)=0$ for all $x, y \in S_{X}$.

Our next lemma will show that every surjective phase-isometry between the unit spheres of real atomic L_{p}-space for $p>0$ necessarily maps antipodal points to antipodal points. So the positive homogeneous extension is homogeneous for the negative scalars as well.
Lemma 2.3. Let $X=l_{p}(\Gamma)$ and $Y=l_{p}(\Delta)$ for $p>0$. Suppose that $f: S_{X} \rightarrow$ S_{Y} is a surjective phase-isometry. Then f is injective and $f(-x)=-f(x)$ for every $x \in S_{X}$. Moreover, for every $\gamma \in \Gamma$, there exists $\delta \in \Delta$ such that $f\left(e_{\gamma}\right)= \pm e_{\delta}$.
Proof. Let us take $x \in S_{X}$. Since f is surjective, we can pick $y \in S_{X}$ such that $f(y)=-f(x)$. Notice that f is a phase-isometry, we have

$$
\{\|x+y\|,\|x-y\|\}=\{\|f(x)+f(y)\|,\|f(x)-f(y)\|\}=\{0,2\}
$$

which implies that $y= \pm x$. If $y=x$, then $f(x)=f(y)=-f(x)$, which is impossible. Hence we get $y=-x$ and so $f(-x)=-f(x)$. On the other hand, suppose that $f(z)=f(x)$ for some $z \in S_{X}$. By the assumption of f, we have

$$
\{\|x+z\|,\|x-z\|\}=\{\|f(x)+f(z)\|,\|f(x)-f(z)\|\}=\{2,0\}
$$

This means that $z=x$ and f is injective.
We will prove the "moreover" part. Let δ be in the support of $f\left(e_{\gamma}\right)$ and pick $x \in S_{X}$ such that $f(x)=e_{\delta}$. Applying Lemma 2.2 we have

$$
e_{\gamma} e_{\gamma^{\prime}}=0 \Rightarrow f\left(e_{\gamma}\right) f\left(e_{\gamma^{\prime}}\right)=0 \Rightarrow f(x) f\left(e_{\gamma^{\prime}}\right)=0 \Rightarrow x e_{\gamma^{\prime}}=0
$$

for all $\gamma^{\prime} \in \Gamma$ with $\gamma^{\prime} \neq \gamma$. It follows that $x= \pm e_{\gamma}$, and so $f\left(e_{\gamma}\right)= \pm e_{\delta}$.
Now we derive the representation theorem of surjective phase-isometries between the unit spheres of real atomic L_{p}-spaces for $p>0, p \neq 2$.

Theorem 2.4. Let $X=l_{p}(\Gamma)$ and $Y=l_{p}(\Delta)$ for $p>0, p \neq 2$. Suppose that $f: S_{X} \rightarrow S_{Y}$ is a surjective phase-isometry. Then for every $x=\sum_{\gamma \in \Gamma} \xi_{\gamma} e_{\gamma} \in$ S_{X}, we have $f(x)=\sum_{\gamma \in \Gamma} \eta_{\gamma} f\left(e_{\gamma}\right)$, where $\left|\xi_{\gamma}\right|=\left|\eta_{\gamma}\right|$ for all $\gamma \in \Gamma$.

Proof. Let x be in S_{X} and write $x=\sum_{\gamma \in \Gamma_{x}} \xi_{\gamma} e_{\gamma}$, where $\sum_{\gamma \in \Gamma_{x}}\left|\xi_{\gamma}\right|^{p}=1$ and $\xi_{\gamma} \neq 0$ for all $\gamma \in \Gamma_{x}$. According to Lemma 2.3, we can set

$$
M:=\left\{\delta \in \Delta: f\left(e_{\gamma}\right)= \pm e_{\delta}, \forall \gamma \in \Gamma_{x}\right\}
$$

Choose $y \in S_{X}$ such that $f(y)=e_{\delta}$ for some $\delta \in \Delta \backslash M$. Applying Lemma 2.2, we have

$$
f\left(e_{\gamma}\right) f(y)=0 \Rightarrow e_{\gamma} y=0 \Rightarrow x y=0 \Rightarrow f(x) f(y)=f(x) e_{\delta}=0
$$

for all $\gamma \in \Gamma_{x}$. Thus we can write $f(x)=\sum_{\gamma \in \Gamma_{x}} \eta_{\gamma} f\left(e_{\gamma}\right)$, where $\sum_{\gamma \in \Gamma_{x}}\left|\eta_{\gamma}\right|^{p}=$ 1. By the assumption of f,

$$
\begin{aligned}
& \left\|f(x)+f\left(e_{\gamma}\right)\right\|^{p}+\left\|f(x)-f\left(e_{\gamma}\right)\right\|^{p} \\
= & \left\|x+e_{\gamma}\right\|^{p}+\left\|x-e_{\gamma}\right\|^{p} \\
= & 1-\left|\xi_{\gamma}\right|^{p}+\left|\xi_{\gamma}+1\right|^{p}+1-\left|\xi_{\gamma}\right|^{p}+\left|\xi_{\gamma}-1\right|^{p} \\
= & \left|1+\xi_{\gamma}\right|^{p}+\left|1-\xi_{\gamma}\right|^{p}-2\left|\xi_{\gamma}\right|^{p}+2 .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \left\|f(x)+f\left(e_{\gamma}\right)\right\|^{p}+\left\|f(x)-f\left(e_{\gamma}\right)\right\|^{p} \\
= & 1-\left|\eta_{\gamma}\right|^{p}+\left|\eta_{\gamma}+1\right|^{p}+1-\left|\eta_{\gamma}\right|^{p}+\left|\eta_{\gamma}-1\right|^{p} \\
= & \left|1+\eta_{\gamma}\right|^{p}+\left|1-\eta_{\gamma}\right|^{p}-2\left|\eta_{\gamma}\right|^{p}+2 .
\end{aligned}
$$

It follows that

$$
\left|1+\xi_{\gamma}\right|^{p}+\left|1-\xi_{\gamma}\right|^{p}-2\left|\xi_{\gamma}\right|^{p}=\left|1+\eta_{\gamma}\right|^{p}+\left|1-\eta_{\gamma}\right|^{p}-2\left|\eta_{\gamma}\right|^{p} .
$$

Notice that the function $\varphi(t)=(1+t)^{p}+(1-t)^{p}-2 t^{p}$ is strictly decreasing (increasing) on $[0,1]$ for $0<p<2(p>2)$ (Here, we need the fact that $(s+r)^{p}<s^{p}+r^{p}$ for $0<p<1$ and $(s+r)^{p}>s^{p}+r^{p}$ for $p>1$ whenever $s, r>0$). Consequently, we obtain $\left|\xi_{\gamma}\right|=\left|\eta_{\gamma}\right|$ for all $\gamma \in \Gamma_{x}$.

Our next results are devoted to determining the behaviour of surjective phase-isometries between the unit spheres of real atomic L_{p}-spaces for $p>0$, $p \neq 2$ on vectors which are linear combinations of two zero-product norm-one vectors.

Lemma 2.5. Let $X=l_{p}(\Gamma)$ and $Y=l_{p}(\Delta)$ for $p>0, p \neq 2$. Suppose that $f: S_{X} \rightarrow S_{Y}$ is a surjective phase-isometry. Let $x, y \in S_{X}$ with $x y=0$ and $\lambda \in \mathbb{R}$. Then there exist two real numbers α, β with $|\alpha|=|\beta|=1$ such that

$$
\|x+\lambda y\| f\left(\frac{x+\lambda y}{\|x+\lambda y\|}\right)=\alpha f(x)+\beta \lambda f(y)
$$

Proof. Suppose that $x=\sum_{\gamma \in \Gamma_{x}} \xi_{\gamma} e_{\gamma}$ and $y=\sum_{\gamma \in \Gamma_{y}} \eta_{\gamma} e_{\gamma}$, and that $0 \neq \lambda \in$ \mathbb{R}. By Theorem 2.4 we can write

$$
\begin{aligned}
& f(x)=\sum_{\gamma \in \Gamma_{x}} \xi_{\gamma}^{\prime} f\left(e_{\gamma}\right), \quad f(y)=\sum_{\gamma \in \Gamma_{y}} \eta_{\gamma}^{\prime} f\left(e_{\gamma}\right), \\
& \|x+\lambda y\| f\left(\frac{x+\lambda y}{\|x+\lambda y\|}\right)=\sum_{\gamma \in \Gamma_{x}} \xi^{\prime \prime}{ }_{\gamma} f\left(e_{\gamma}\right)+\lambda \sum_{\gamma \in \Gamma_{y}} \eta^{\prime \prime}{ }_{\gamma} f\left(e_{\gamma}\right),
\end{aligned}
$$

where $\left|\xi^{\prime}{ }_{\gamma}\right|=\left|\xi^{\prime \prime}{ }_{\gamma}\right|=\left|\xi_{\gamma}\right|$ and $\left|\eta^{\prime}{ }_{\gamma}\right|=\left|\eta^{\prime \prime}{ }_{\gamma}\right|=\left|\eta_{\gamma}\right|$ for all $\gamma \in \Gamma_{x} \cup \Gamma_{y}$. To simplify the writing, we take $A=\frac{1}{\|x+\lambda y\|}=\frac{1}{\left(1+|\lambda|^{p}\right)^{\frac{1}{p}}}$. Since f is a phaseisometry,

$$
\begin{aligned}
& \left\{(A+1)^{p}+(A|\lambda|)^{p},(1-A)^{p}+(A|\lambda|)^{p}\right\} \\
= & \left\{\left\|\frac{x+\lambda y}{\|x+\lambda y\|}+x\right\|^{p},\left\|\frac{x+\lambda y}{\|x+\lambda y\|}-x\right\|^{p}\right\} \\
= & \left\{\left\|f\left(\frac{x+\lambda y}{\|x+\lambda y\|}\right)+f(x)\right\|^{p},\left\|f\left(\frac{x+\lambda y}{\|x+\lambda y\|}\right)-f(x)\right\|^{p}\right\} \\
= & \left\{\sum_{\gamma \in \Gamma_{x}}\left|A{\xi^{\prime \prime}}_{\gamma}+{\xi^{\prime}}_{\gamma}\right|^{p}+(A|\lambda|)^{p}, \sum_{\gamma \in \Gamma_{x}}\left|A{\xi^{\prime \prime}}_{\gamma}-{\xi^{\prime}}_{\gamma}\right|^{p}+(A|\lambda|)^{p}\right\} .
\end{aligned}
$$

This shows that

$$
(A+1)^{p} \in\left\{\sum_{\gamma \in \Gamma_{x}}\left|A \xi^{\prime \prime}{ }_{\gamma}+\xi_{\gamma}^{\prime}\right|^{p}, \sum_{\gamma \in \Gamma_{x}}\left|A \xi^{\prime \prime}{ }_{\gamma}-\xi_{\gamma}^{\prime}\right|^{p}\right\}
$$

Notice that

$$
\sum_{\gamma \in \Gamma_{x}}\left|A \xi^{\prime \prime}{ }_{\gamma} \pm \xi_{\gamma}^{\prime}\right|^{p} \leq \sum_{\gamma \in \Gamma_{x}}\left(\left|A \xi^{\prime \prime}{ }_{\gamma}\right|+\left|\xi_{\gamma}^{\prime}\right|\right)^{p}=(A+1)^{p} .
$$

Then we obtain $\xi^{\prime \prime}{ }_{\gamma}=\xi^{\prime}{ }_{\gamma}$ for all $\gamma \in \Gamma_{x}$, or $\xi^{\prime \prime}{ }_{\gamma}=-\xi^{\prime}{ }_{\gamma}$ for all $\gamma \in \Gamma_{x}$. It follows that $\sum_{\gamma \in \Gamma_{x}} \xi^{\prime \prime}{ }_{\gamma} e_{\gamma}= \pm f(x)$. Similar argument yields $\sum_{\gamma \in \Gamma_{y}} \eta^{\prime \prime}{ }_{\gamma} e_{\gamma}= \pm f(y)$. The proof is complete.

In [13] Wang proved that for every surjective isometry between unit spheres of real atomic L_{p}-spaces for $p>0, p \neq 2$, its natural positive homogeneous extension is a linear isometry on the whole space. By this result, we are now ready to present main result of this paper.

Theorem 2.6. Let $X=l_{p}(\Gamma)$ and $Y=l_{p}(\Delta)$ for $p>0$. Suppose that f : $S_{X} \rightarrow S_{Y}$ is a surjective phase-isometry. Then the positive extension F of f is phase equivalent to a linear isometry.
Proof. Proposition 2.1 proves the case $p=2$. We need only consider the case $p>0, p \neq 2$. Set $Z:=\left\{x \in X: x e_{\gamma_{0}}=0\right\}$ and $W:=\left\{w \in Y: w f\left(e_{\gamma_{0}}\right)=0\right\}$ for some $\gamma_{0} \in \Gamma$. It is not hard to check that $S_{X}=\left\{\frac{z+\lambda e_{\gamma_{0}}}{\left\|z+\lambda e_{\gamma_{0}}\right\|}: z \in S_{Z}, \lambda \in\right.$ $\mathbb{R}\} \cup\left\{ \pm e_{\gamma_{0}}\right\}$. By Lemma 2.5 we can write

$$
\begin{aligned}
& \left\|z+\lambda e_{\gamma_{0}}\right\| f\left(\frac{z+\lambda e_{\gamma_{0}}}{\left\|z+\lambda e_{\gamma_{0}}\right\|}\right)=\alpha(z, \lambda) f(z)+\beta(z, \lambda) \lambda f\left(e_{\gamma_{0}}\right) \\
& |\alpha(z, \lambda)|=|\beta(z, \lambda)|=1
\end{aligned}
$$

for all $z \in S_{Z}$ and $\lambda \in \mathbb{R}$. Define a mapping $g: S_{X} \rightarrow S_{Y}$ as follows:

$$
\begin{aligned}
& g\left(e_{\gamma_{0}}\right)=f\left(e_{\gamma_{0}}\right), \quad g\left(-e_{\gamma_{0}}\right)=-f\left(e_{\gamma_{0}}\right), \quad g(z)=\alpha(z, 1) \beta(z, 1) f(z), \\
& \left\|z+\lambda e_{\gamma_{0}}\right\| g\left(\frac{z+\lambda e_{\gamma_{0}}}{\left\|z+\lambda e_{\gamma_{0}}\right\|}\right)=\alpha(z, \lambda) \beta(z, \lambda) f(z)+\lambda f\left(e_{\gamma_{0}}\right)
\end{aligned}
$$

for all $z \in S_{Z}$ and $0 \neq \lambda \in \mathbb{R}$. Then g is a phase-isometry, which is phase equivalent to f. Since $f\left(S_{Z}\right)=S_{W}$ by Theorem 2.4, we deduce that $g\left(S_{Z}\right) \subset$ S_{W}.

Next, we will show that $g \mid S_{Z}: S_{Z} \rightarrow S_{W}$ is a surjective isometry. Let us take $z \in S_{Z}$ and $0 \neq \lambda \in \mathbb{R}$. Set $A:=\frac{1}{\left\|z+e_{\gamma_{0}}\right\|}$ and $B:=\frac{1}{\left\|z+\lambda e_{\gamma_{0}}\right\|}$. Since g is a phase-isometry,

$$
\begin{aligned}
& \quad\left\{|A+B|^{p}+|A+B \lambda|^{p},|A-B|^{p}+|A-B \lambda|^{p}\right\} \\
& = \\
& =\left\{\left\|\frac{z+e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}+\frac{z+\lambda e_{\gamma_{0}}}{\left\|z+\lambda e_{\gamma_{0}}\right\|}\right\|^{p},\left\|\frac{z+e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}-\frac{z+\mid \lambda e_{\gamma_{0}}}{\left\|z+\lambda e_{\gamma_{0}}\right\|}\right\|^{p}\right\} \\
& = \\
& =\left\{\left\|g\left(\frac{z+e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}\right)+g\left(\frac{z+\lambda e_{\gamma_{0}}}{\left\|z+\lambda e_{\gamma_{0}}\right\|}\right)\right\|^{p},\left\|g\left(\frac{z+e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}\right)-g\left(\frac{z+\lambda e_{\gamma_{0}}}{\left\|z+\lambda e_{\gamma_{0}}\right\|}\right)\right\|^{p}\right\} \\
& = \\
& \left\{|A \alpha(z, 1) \beta(z, 1)+B \alpha(z, \lambda) \beta(z, \lambda)|^{p}+|A+B \lambda|^{p},\right. \\
& \\
& \text { If } \alpha\left(z \alpha(z, 1) \beta(z, 1)-\left.B \alpha(z, \lambda) \beta(z, \lambda)\right|^{p}+|A-B \lambda|^{p}\right\} . \\
& \qquad\{\mid A-B(z, \lambda) \beta(z, \lambda), \text { then } \\
& \qquad=\left\{|A+B|^{p}+|A+B \lambda|^{p},|A+B|^{p}+|A-B \lambda|^{p}\right\} \\
& \left.\quad=|A-B|^{p}+|A-B \lambda|^{p}\right\} .
\end{aligned}
$$

This leads to a contradiction for $\lambda \neq 0$. It follows that $\alpha(z, 1) \beta(z, 1)=$ $\alpha(z, \lambda) \beta(z, \lambda)$, and hence

$$
\left\|z+\lambda e_{\gamma_{0}}\right\| g\left(\frac{z+\lambda e_{\gamma_{0}}}{\left\|z+\lambda e_{\gamma_{0}}\right\|}\right)=g(z)+\lambda g\left(e_{\gamma_{0}}\right)
$$

for all $z \in S_{Z}$ and $\lambda \in \mathbb{R}$. Let z_{1}, z_{2} be in S_{Z} and $\lambda>\left\|z_{1}-z_{2}\right\| / 2$. Clearly,

$$
\frac{1}{1+\lambda^{p}}\left\{\left\|g\left(z_{1}\right)+g\left(z_{2}\right)\right\|^{p}+(2 \lambda)^{p},\left\|g\left(z_{1}\right)-g\left(z_{2}\right)\right\|^{p}\right\}
$$

$$
\begin{aligned}
& =\left\{\left\|g\left(\frac{z_{1}+\lambda e_{\gamma_{0}}}{\left\|z_{1}+\lambda e_{\gamma_{0}}\right\|}\right)+g\left(\frac{z_{2}+\lambda e_{\gamma_{0}}}{\left\|z_{2}+\lambda e_{\gamma_{0}}\right\|}\right)\right\|^{p},\left\|g\left(\frac{z_{1}+\lambda e_{\gamma_{0}}}{\left\|z_{1}+\lambda e_{\gamma_{0}}\right\|}\right)-g\left(\frac{z_{2}+\lambda e_{\gamma_{0}}}{\left\|z_{2}+\lambda e_{\gamma_{0}}\right\|}\right)\right\|^{p}\right\} \\
& =\left\{\left\|\frac{z_{1}+\lambda e_{\gamma_{0}}}{\left\|z_{1}+\lambda e_{\gamma_{0}}\right\|}+\frac{z_{2}+\lambda e_{\gamma_{0}}}{\left\|z_{2}+\lambda e_{\gamma_{0}}\right\|}\right\|^{p},\left\|\frac{z_{1}+\lambda e_{\gamma_{0}}}{\left\|z_{1}+\lambda e_{\gamma_{0}}\right\|}-\frac{z_{2}+\lambda e_{\gamma_{0}}}{\left\|z_{2}+\lambda e_{\gamma_{0}}\right\|}\right\|^{p}\right\} \\
& =\frac{1}{1+\lambda^{p}}\left\{\left\|z_{1}+z_{2}\right\|^{p}+(2 \lambda)^{p},\left\|z_{1}-z_{2}\right\|^{p}\right\} .
\end{aligned}
$$

This implies that $\left\|g\left(z_{1}\right)-g\left(z_{2}\right)\right\|=\left\|z_{1}-z_{2}\right\|$ for all $z_{1}, z_{2} \in S_{Z}$. On the other hand,

$$
\begin{aligned}
& \frac{1}{2}\left\{\|g(z)+g(-z)\|^{p},\|g(z)-g(-z)\|^{p}+2^{p}\right\} \\
= & \left\{\left\|g\left(\frac{z+e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}\right)+g\left(\frac{-z-e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}\right)\right\|^{p},\left\|g\left(\frac{z+e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}\right)-g\left(\frac{-z-e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}\right)\right\|^{p}\right\} \\
= & \left\{\left\|\frac{z+e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}+\frac{-z-e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}\right\|^{p},\left\|\frac{z+e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}-\frac{-z-e_{\gamma_{0}}}{\left\|z+e_{\gamma_{0}}\right\|}\right\|^{p}\right\} \\
= & \frac{1}{2}\left\{0,2^{p}\right\}
\end{aligned}
$$

for all $z \in S_{Z}$. This shows that $g(-z)=-g(z)$ for all $z \in S_{Z}$. Since g is phase equivalent to f, we see that $g \mid S_{Z}: S_{Z} \rightarrow S_{W}$ is a surjective isometry.

Finally, we prove that F is phase equivalent to a linear isometry. Since the natural positive homogeneous extension G of g is phase equivalent to F, it is suffices to showing that $G: X \rightarrow Y$ is a linear isometry. By Lemma 2.3, we have $f\left(e_{\gamma_{0}}\right)= \pm e_{\delta_{0}}$ for some $\delta_{0} \in \Delta$. It is easily verified that Z and W are linearly isometric to $l_{p}\left(\Gamma \backslash\left\{\gamma_{0}\right\}\right)$ and $l_{p}\left(\Delta \backslash\left\{\delta_{0}\right\}\right)$ respectively. From Wang's result [13], the restriction of G to Z is a linear isometry. Set $x:=\frac{z}{\|z\|}+\frac{\lambda e_{\gamma_{0}}}{\|z\|}$ for some $0 \neq z \in Z$ and $\lambda \in \mathbb{R}$. It follows that
$G\left(z+\lambda e_{\gamma_{0}}\right)=\|z\|\|x\| g\left(\frac{x}{\|x\|}\right)=\|z\|\left(g\left(\frac{z}{\|z\|}\right)+\frac{\lambda g\left(e_{\gamma_{0}}\right)}{\|z\|}\right)=G(z)+\lambda g\left(e_{\gamma_{0}}\right)$.
This shows that $G: X \rightarrow Y$ is a linear isometry, which completes the proof.
Acknowledgements. The authors cordially thank Professor Guanggui Ding for his helpful suggestions. The authors also thank the referee for several helpful comments and suggestions.

References

[1] D. F. Almeida and C. S. Sharma, The first mathematical proof of Wigner's theorem, J. Natur. Geom. 2 (1992), no. 2, 113-123.
[2] S. Banach, Théorie des opérations linéaires, reprint of the 1932 original, Éditions Jacques Gabay, Sceaux, 1993.
[3] G. Ding, On isometric extension problem between two unit spheres, Sci. China Ser. A 52 (2009), no. 10, 2069-2083. https://doi.org/10.1007/s11425-009-0156-x
[4] Gy. P. Gehér, An elementary proof for the non-bijective version of Wigner's theorem, Phys. Lett. A 378 (2014), no. 30-31, 2054-2057. https://doi.org/10.1016/j.physleta. 2014.05.039
[5] M. Győry, A new proof of Wigner's theorem, Rep. Math. Phys. 54 (2004), no. 2, 159167. https://doi.org/10.1016/S0034-4877(04)80012-0
[6] X. Huang and D. Tan, Wigner's theorem in atomic L_{p}-spaces ($p>0$), Publ. Math. Debrecen 92 (2018), no. 3-4, 411-418. https://doi.org/10.5486/pmd.2018.8005
[7] J. Lamperti, On the isometries of certain function-spaces, Pacific J. Math. 8 (1958), 459-466. http://projecteuclid.org/euclid.pjm/1103039892
[8] L. Molnár, Orthogonality preserving transformations on indefinite inner product spaces: generalization of Uhlhorn's version of Wigner's theorem, J. Funct. Anal. 194 (2002), no. 2, 248-262. https://doi.org/10.1006/jfan.2002.3970
[9] A. M. Peralta and M. Cueto-Avellaneda, The Mazur-Ulam property for commutative von Neumann algebras, Linear and Multilinear A.; arXiv:1803.00604, 2018.
[10] J. Rätz, On Wigner's theorem: remarks, complements, comments, and corollaries, Aequationes Math. 52 (1996), no. 1-2, 1-9. https://doi.org/10.1007/BF01818323
[11] D. Tingley, Isometries of the unit sphere, Geom. Dedicata 22 (1987), no. 3, 371-378. https://doi.org/10.1007/BF00147942
[12] A. Turnšek, A variant of Wigner's functional equation, Aequationes Math. 89 (2015), no. 4, 1-8,
[13] J. Wang, On extension of isometries between unit spheres of $A L^{p}$-spaces $(0<p<\infty)$, Proc. Amer. Math. Soc. 132 (2004), no. 10, 2899-2909.

Xujian Huang
Department of Mathematics
Tianjin University of Technology
300384 Tianjin, P. R. China
Email address: huangxujian86@sina.cn
Xihong Jin
Department of Mathematics
Tianjin University of Technology
300384 Tianjin, P. R. China
Email address: jinxihong05@163.com

[^0]: Received June 9, 2018; Revised March 6, 2019; Accepted April 1, 2019.
 2010 Mathematics Subject Classification. 46B04, 46B20.
 Key words and phrases. extension of phase-isometries, unit sphere, atomic L_{p}-spaces.
 The authors are supported by the Natural Science Foundation of China, Grant No. 11371201, 11201337, 11201338.

