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ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS
AND ROUGH ISOMETRIES

SEOK W00 KiM AND YONG HAH LEE

ABSTRACT. We prove that if a graph G of bounded degree has finitely
many p-hyperbolic ends {1 < p < 00) in which every bounded energy finite
p-harmonic function is asymptotically constant for almost every path,
then the set HBD,(G) of all bounded energy finite p-harmonic functions
on G is in one to one corresponding to R!, where [ is the number of p-
hyperbolic ends of G. Furthermore, we prove that if a graph G’ is roughly
isometric to G, then HBD,(G’) is also in an one to one correspondence
with RE.

1. Introduction

We say that a graph G has the Liouville property if every bounded harmonic
function on G is constant. Thus the set of all bounded harmonic functions on
G having Liouville property is in one to one correspondence with the real line
R. With this view point, given an operator .4 on a graph, it seems natural
to regard a class S of solutions of .4 which is in an one to one correspondence
with the Euclidean space R' for some positive integer ! as a generalized version
of the Liouville property of the pair (A,S). In this paper, we study case of
the p-Laplacian operator (1 < p < oo) and the bounded p-harmonic functions
on a graph G of bounded degree. If p = 2, then we obtain harmonic functions
on G as a special case. (See [6] and [8].) In Section 3, we study a sort of
an asymptotic behavior of p-harmonic functions which enables us to identify a
subset of the set of the bounded p-harmonic functions on G. To be precise, if
a graph G has a finite number of p-hyperbolic ends and every bounded energy
finite p-harmonic function on G satisfies such an behavior, then we have the
following theorem:

Theorem 1.1. Let G be a graph with L (I > 1) p-hyperbolic ends. Suppose that
every p-harmonic function in HBDL(G) is asymptotically constant for p-almost
every path in each p-hyperbolic end, where HBD,(G) denotes the set of all
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bounded energy finite p-harmonic functions on G. Then given any real numbers

a1,az,...,a0; € R, there erists a unigue p-harmonic function v € HBD,(G)
such that
(1) v(p) = a; for p-almost every path p € Pg,

for each i = 1,2,...,1, where Eq, Es, ..., E; are p-hyperbolic ends of G, and
Pg, denotes a family of paths lying in E; to be explained in Section 3.

In Section 4, we extend our result to graphs being roughly isometric to those
satisfying the assumption of Theorem 1.1:

Theorem 1.2. Let G be a graph with 1 (I > 1) p-hyperbolic ends. Suppose that
every p-harmonic function in HBD,(G) is asymptotically constant for p-almost
every path in each p-hyperbolic end. Let G' be a graph being roughly isometric
to G. Then given any real numbers ay,as,...,a; € R, there exists a unique
p-harmonic function v € HBD,(G") such that

v(p) = a; for p-almost every path p € Pg,

for each i =1,2,...,1, where E1, Ea,...,E; are p-hyperbolic ends of G".

2. Preliminaries

Let G = (Vg, Eg) be a graph, where Vi and E¢ denote the vertex set and
the edge set, respectively, of G. If vertices z and y are the endpoints of the
same edge, then we say that # and y are neighbors and write y € N, and
z € Ny. The degree of « is the number of all neighbors of = and it is denoted
by §N,. A graph G is said to be of bounded degree if there exists a number
v < oo such that §N, < v for all z € V. A sequence x = (zg,Z1,...,Tr)
of vertices in Vg is called a path from zg to z, with the length r if zg is an
element of N, , for each k = 1,2,...,r. We say that a graph G is connected
if any two points of Vo can be joined by a path. Throughout this paper, G is
a connected infinite graph with no self-loops and is of bounded degree.

For any vertices z and y, we define d(z,y) to be the length of the shortest
path joining x to y. Then d defines a metric on V. For this metric d and
r € N, define an r-neighborhood N,(z) = {y € Vg : d(z,y) < r} for each
z € Vg. Given any subset S C Vg, the outer boundary 85 and the inner
boundary 05 of S are defined by

S ={zeVs:d(z,S) =1} and 85 = {z € Vi : d(z, Ve \ S) =1},

respectively.
For each real valued function u on SUQJS, define the norm of p-gradient, the
p-Dirichlet sum, and the p-Laplacian of u at a point z € S, where 1 < p < 0,
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in such a way that

Dul@) = (3 ) - u@p) "

yEN,

L(w,S) = Y |DuP(z)

z€S

Apu(z) = Y sign(uly) — u(@))luly) — u(z)P

YEN,

> Ju(y) — u(@) P> (uly) - w(z)),

YyEN,

respectively.

We say that u is p-harmonic on S if Ayu(z) =0 for all z € S. We introduce
some useful properties of p-harmonic functions on graphs in [1]. If a subset
S C Vg is finite, then the following conditions are equivalent:

(i) A function u is p-harmonic on S.
(i) A function u satisfies p-Laplacian equation in a weak form. That is,

S S July) - u(@) P (uly) - ul@) (wly) - w(@) =0
z€S yEN,

for any real valued function w on S U 85 such that w = 0 on 95.
(iii) A function u is a minimizer of p-Dirichlet sum I, (-, S) among functions
on S U S with the same values on 85. That is,

> [DufP(z) < Y [DvlP(x)
zeS €S
for every function v on S U 35S such that v =« on 0S.
Let us set T'(u, w; z,y) = |u(y)—u(z)P~%(u(y)—u(z))(w(y) —w(z)) whenever
functions v and w are defined at x and y. Then it is easy to check that
(2) T(U,U—U;fﬂ,y) ZT(u,v—u;x,y)

if u and v are defined at z and y. The equality occurs only if v(z) — u(z) =
v(y) — uly). By (2), the following comparison principle holds on S: Suppose
there exist p-harmonic functions u and v on a finite set S C Vi such that u > v
on 8S. Thenu >von S.

Let S be a finite subset of V. Suppose that {u;} is a sequence of functions
on S U JS converging to a function u pointwisely. Then for each point z € S,

|Du;|P(z) — |Dul|P(z) and Apu;(z) — Apu(z)
and
Iy(u;, S) — Ipy(u, S)

as ¢ — co. By these facts together with the comparison principle, the following
existence and uniqueness result holds: Let .S be a finite subset of V5. For any
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function v on 85, there exists a unique function on SU@S which is p-harmonic
on S and equal to v on 38S.

Let {S;} be an increasing sequence of finite connected subsets of Vg and
S =J8;. Let {u;} be a sequence of functions on S U S such that each u; is
p-harmonic on S; and u;(z) — u(z) < 00 as i — oo for all x € SUJS. Then
the limit function u is p-harmonic on S.

We say that a real valued function u is energy finite if it has finite p-Dirichlet
sum on the whole set Vg, i.e., I,(u,Vg) < o0o. Let BD,(G) denote the sgt of
all bounded energy finite functions on V. Then, BD,(G) is a Banach space
with the norm

||lullp = sup |u| + Ip(u, VG)I/p'
Vo

We denote by BD,, (G) the closure of the set of all finitely supported functions
on Vg in BD,(G) with respect to the norm || - ||,. The subset of all bounded
p-harmonic functions in BD,(G) is denoted by HBD,(G).

The subgraph I’ induced by a set S C Vg is the graph T’ = (S, Er), where
Er is the set of all edges in Fg with both ends points in S. In particular, that
a subset § C Vi is connected means that the subgraph I' = (S, Fr) induced by
S is connected. A connected subset S C Vi with 85 # 0 is called D,-massive
if there exists a nonnegative p-harmonic function u on S such that v = 0 on
08, supgu =1 and I,(u, S) < oo. We say that a connected infinite set S C Vg
is p-hyperbolic if there exists a nonempty finite set A C S such that

Cap,(A, 00, S) = iI&fI,,(u,S) > 0,

where the infimum is taken over all finitely supported function 4 on S U 39S
such that ©v = 1 on A. Otherwise, S is called p-parabolic.
We now introduce the p-Royden decomposition: (See [9].)

Proposition 2.1. If a graph G is p-hyperbolic, then for each function u €
BD,(G), there exist unique functions h € HBDy(G) and g € BDpo(G) such
that u=h+g.

For each nonnegative real valued function w on Eg, define
Ep(w) = Z wP(e).
ecEc
Let P be a family of infinite paths in G. The p-extremal length A\p,(P) of P is
defined by
-1
Ap(P) = (inf 5p(w)) :
where the infimum is taken over the set of all nonnegative functions w on Eg
such that £y(w) < oo and ) .p w(e) > 1 for each path x € P, where Ex

denotes the edge set of x. The following proposition gives some fundamental
properties of the extremal length. (See [4].)

Proposition 2.2. Let P,,n=1,2,..., be families of paths in a graph G.
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(i) IfPy C Po, then )\p(Pl) > )\p(Pg).
(i) Yoomy Ap(Pa) ™1 2 A\ (U, Py) L

On the other hand, the p-extremal length is closely related to the p-capacity:
Let S C Vi be a connected infinite subset. For a nonempty finite subset A C S,
let P 4 be the set of all non-self-intersecting infinite paths in § starting from
a vertex in A. Then we have

(3) Ap(Ps,.4) = Cap, (4, 00,5)7.
(See [9] and [7].) Furthermore, if S C V¢ is p-hyperbolic, then by (3),
(4) Ap(Ps,4) = Cap,(4,00,8)7! < 0.

We say that a property holds for p-almost every path in P if the subset of all
paths for which the property is not true has p-extremal length co.

The following proposition gives some p-almost every path properties of en-
ergy finite functions: (See (4] and [9].)

Proposition 2.3. Let P, be the family of all non-self-intersecting infinite paths
from a fized point 0 € V.
(i) If u € BDy(G), then u(x) ezists and is finite for p-almost every path
x € P, where u(x) = limu(z) as z — co along the vertices of x.
(ii) u € BD,o(G) #f and only if u(x) = 0 for p-almost every path x € P,,.

3. Asymptotically constant for p-almost every path on ends

We now define ends of a graph G with its vertex set V: Fix a point o € V.
For each r € N, we denote by #(r) the number of infinite connected components
of Vo \ Ny(0). Let lim,ofi(r) = I, where [ may be infinity, then we say that
the number of ends of G is I. If { is finite, then we can choose ry € N such that
§(r) =1 for all r > ry.

Using the p-hyperbolicity, we can divide ends of G into two classes as follows:
An end E of G is called p-hyperbolic if

Cap,(0F, 00, E) = inf I,(u, E) > 0,

where the infimum is taken over all finitely supported function v on E U 8E
such that u = 1 on OF. Otherwise, the end is called p-parabolic.
From the definition of a p-hyperbolic end, we have the following lemma:

Lemma 3.1. IfE is a p-hyperbolic end, then there exists a p-harmonic function
ug on £, called a p-harmonic measure of E, with the following properties:
(i 0<ug<1onE;
(ii} ugp = 0 on OF;
(iii) limsup,cpup(z) = 1;
(iv) ug has finite p-Dirichlet sum over E.
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Let us denote P to be the family of all non-self-intersecting infinite paths
lying in Vg \ Ny, (0) starting from a vertex in dN,., (o) for some large 71 € N.
For each end E of G, let us denote Pg C Pg to be the family of all paths
lying in E'\ N, (o) starting from a vertex in §N,, (o) N E. We say that a real
valued function u on Vi is asymptotically constant for p-almost every path in
E if there exists a constant ¢ such that

u(x) = ¢ for p-almost every path x € Pg,
where u(x) = limu(z) as z goes to co along vertices on x.

Lemma 3.2. Let E be a p-hyperbolic end of a graph G and u be a nonconstant
function in HBD,(G) such that 0 < u < 1. Suppose that u is asymptotically

constant for p-almost every path in E. If limsup u = 1, then u(x) = 1 for
00, zER

p-almost every path x € Pg.

Proof. Suppose the lemma is not true. Then by assumption, there exists a
constant ¢ such that u(x) = ¢ for p-almost every path x € P and 0 < ¢ < 1.
Since u is nonconstant, there exists a proper subset Q of E such that Q) =
{z € E:u(x) > 1 — €}, where € is a positive constant so small that 1 — € > c.
Clearly, {2 is a Dy-massive subset. By (4), there exists a subfamily Pg, of Py
such that A\,(Pg) < co. But from the definition of , one can conclude that
u(x) > ¢ for all paths x € Pgq. This contradicts the fact that u(x) = ¢ for
p-almost every path x € Pg. This completes the proof. O

Proof of Theorem 1.1. For each ¢ = 1,2,...,1, extend ug, to be zero outside
E; and then construct a sequence of real valued functions {u,;}r~., on Vg
such that
{ Apur; = 0 on N.(o);
Uri = ug, on Vg\Nq(o),

where ug, is a p-harmonic measure of E; constructed in Lemma 3.1 for each 3.
By the comparison principle, ug, < u,; <1 on N,(0) for each 5. Thus there
exists a convergent subsequence, and its limit function u; satisfies that

Apu; = 0 on Vg
0 <uw < 1
limsup u; = 1.

r—00,rEE;

By the minimizing property of p-harmonic functions, u; is energy finite for each
1.

Without loss of generality, we may assume that 0 < a; < as < -+ < q; <
2a;. Let us construct a sequence of real valued functions {v, },>n, such that

Apvr, = 0 on N.(o);
vr = a; on E;\N.(o);
v, = 0 on Vg\(U._,ExUN(0)),
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where ¢ = 1,2,...,1. Then
a;iu; < vr < ai(2 —u;) on (6N, (o) UIN,(0)) N E;,

where u; is the p-harmonic function constructed above. Hence by the compar-
ison principle, we conclude that

au; < v < a;(2—u;) on No(o)NE,.
There exists a subsequence, denoted by {v,,}, converging to a p-harmonic
function v on Vz. By Lemma 3.2, u;(x) = 1 for p-almost every path x € Pg,
for each 7. Hence v satisfies (1). By the minimizing property of p-harmonic
function, v has finite p-Dirichlet sum.
Suppose that there exists a p-harmonic function w € HBD,(G) satisfying

(1). Put Pg, =P, 1 U P, o for each ¢, where

Piwi1={x€ Pg, :wx)=a;} and P, 2 ={x€Pg, : w(x) # a;}.
Then we have A\p(P; 1) < 00 and A\, (Pjy 2) = oo for each i. Similarly, let us
set Pp, = P, 1U P, 2 for each ¢, where

P,,1={x¢€ Pg :v(x)=qa;} and P; 2 ={x € Pg, : v(x) # a;}.
Then we have A\p(P;4,1) < 00 and A, (P; 4 2) = oo for each 3. From Proposition
2.2 and Proposition 2.3, we conclude that

ApPe\ (Piw1NPiv1)) = Mp((Pe \Piwi) U (Pr; \Piyva))
> 1/(0p(Pe \Piw1) ™ + 2 (P, \ Piy1) ™)
= o0
for each 4. This implies that
(v —w)(x) =0 for p-almost every path x € Pg,

for each i = 1,2,...,1. On the other hand, since \,(Pg \ U:{_;Pg,) = oo, we
have

(5) (v —w)(x) =0 for p-almost every path x € Pg.

Consequently, by Proposition 2.3, we conclude that v — w € BD, ¢(G). Thus
there exists a sequence of finitely supported functions converging to v — w in
BD,(G). By this fact together with the Holder inequality, since v and w are
p-harmonic functions on Vg, it is easy to see that

3> oly) —v@) P2 ((y) — v(@) (v — w)(y) — (v —w)(z)) =0
€V yeEN,
and
D> lwly )P~ (w(y) — w(@))((v — w)(y) — (v — w)(=)) = 0.
xzeVo yEN,

Thus by (2), we conclude that v — w is constant function on N, for all points
z € V. Since Vi is connected, by (5), we conclude that v = w on Vg. O
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4. Asymptotically constant for p-almost every path and rough
isometries

We begin with introducing rough isometries between metric spaces. A map
¢ : X — Y is called a rough isometry between metric spaces X and Y if it
satisfies the following condition:

(R) for some constant T > 0, the r-neighborhood of the image ¢(X) covers
Y;
there exist constants a > 1 and b > 0 such that

aYd(z1,20) —b < d(p(z1), p(x2)) < ad(z1,22) + b

for all points z1,z2 € X, where d denotes the distances of X and Y
induced from their metrics, respectively.

If such a map exists, then X is said to be roughly isometric to Y. Being roughly
isometric is an equivalent relation. (See [2].) In particular, if ¢ : X — Y is
a rough isometry satisfying (R), then for any point y € Y, there exists at
least one point z € X such that d(p(z),y) < 7. If we set ¢~ (y) = z, then
¢~ satisfies (R) with constants 7/,a’ and &', where 7/ = a(b+ 7),a’ = a and
b =a(b+27).

On the other hand, since the vertex set of each graph is a metric space,
we can define rough isometries between the vertex sets of graphs similarly as
above. Let G = (Vg, Eg) and G’ = (Viv, Egv) be graphs, and ¢ : Vor — Vg be
a rough isometry. For convenience’ sake, we prefer to write the rough isometry
¢ : G’ — G rather than ¢ : Vgor — V.

Slightly modifying the proof of [5, 3], the number of ends of a graph is a
rough isometric invariant. In fact, the rough isometry between graphs gives
a one to one correspondence between ends of the graphs and, furthermore, it
induces the rough isometry between each end and its corresponding end. On
the other hand, the p-parabolicity of ends is preserved under rough isometries
between ends. Also, we can prove that the property of asymptotically constant
for p-almost every path is invariant under rough isometries between ends as
follows:

Theorem 4.1. Let G and G’ be graphs with finitely many ends and roughly
isometric to each other. Suppose that every p-harmonic function in HBD,(G)
is asymptotically constant for p-almost every path in each p-hyperbolic end of
G. Then every p-harmonic function in HBD,(G') is asymptotically constant
for p-almost every path in each p-hyperbolic end of G'.

To prove Theorem 4.1, we need the following lemmas:

Lemma 4.2. Let G and G’ be graphs with finitely many ends, and ¢ : G’ — G
be a rough isometry. Suppose that every p-harmonic function in HBD,(G) is
asymptotically constant for p-almost every path in each p-hyperbolic end of G.
Then for each u € HBD,(G'), uo ¢~ is asymptotically constant for p-almost
every path in each p-hyperbolic end of G.
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Proof. For each u € HBD,(G'), it is easy to check that u o~ € BD,(G). So,
by Proposition 2.1, there exist unique h € HBD,(G) and g € Dpo(G) such
that
uop =h+4g.

By the assumption, h is asymptotically constant for p-almost every path in each
p-hyperbolic end of G. On the other hand, by Proposition 2.3, g is asymptoti-
cally constant 0 for p-almost every path in each p-hyperbolic end of G.

Let F4, Es,..., E; be p-hyperbolic ends of G. Then there exist constants
¢1,€2,. .., such that

h(y) = ¢; for p-almost every path y € Pg,
for each i =1,2,...,l. Put Pg, = P;p,1 U P, o for each ¢, where
Pi,h,l = {y (S PE,; : h(y) = ci} and Pi,h’g = {y (S PEi : h(y) 75 ci}.

Then we have A, (P; 5,1) < 00 and A\ (P; 5 2) = oo for each 4. Similarly, let us
set P/ = Pj g1 U P; g0 for each i, where

Pig1={y € P, :g(y) =0} and Py, = {y € Pg, : g(y) # 0}.
Then, by our claim, we have A\, (P; 4,1) < oo and A\,(P; 42) = oo for each 3.
Arguing similarly as in the proof of Theorem 1.1, we have

MPe N\ (Pipr1NP;g1)) =00

for each i. Hence u o ™~ is asymptotically constant ¢; at infinity of E; for
p-almost every path y € Pg, for each i. This completes the proof. O

Lemma 4.3. Let G and G’ be graphs with finitely many ends and ¢ : G' — G
be a rough isometry. Let u € HBD,(G’). Suppose that uo @™ is asymptotically
constant for p-almost every path in each p-hyperbolic end of G. Then u is
asymptotically constant for p-almost every path in each p-hyperbolic end of G'.

Proof. Let E be a p-hyperbolic end of G and E’ be the corresponding end of
G’ under y. Since u € HBD,(G’), by Proposition 2.3,

u(x) exists and finite for p-almost every path x € P,,.

Put P =P, UPQUPg, where P, = {XE Pg :U(X) = C}, Py = {XE Pg :
u(x) # ¢} and P3 = {x € Pg : u(x) does not exists.}. Since A,(P3) = oo, we
have only to show that A,(P2) = co.

For each path x € P3, we will assign a suitable path y € P -, where
Py,- ={y € Pg: (uo ¢ )(y) # c}. Let us choose any path x € Py. We
may assume that x = (0,21, 2,...,Zp,...). By definition of the inverse rough
isometry ¢, there exists a point y, € E such that d(z,, o (yn)) < a(b+7)
for each positive integer n. Let us choose a positive constant p in such a way

that d(yn, yn+1) < p and d(@™ (yn), ¥~ (Ynt1)) < p.

For each positive integer n, we can choose a minimal path (zg, 27, ..., 2% ) in

such a way that 2} = y,, 20 = Yny1, and m, < p. It follows that there exists
an infinite path y = (o', %1,t2,...,t;,...) € Pg and a nondecreasing sequence of
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subscripts j(n) — oo as n — oo such that t;,,) = y» and j(n+1)—jn) <p.
One can choose a minimal path (v§,v7,...,v)) in such a way that s =
Tn, 87 = ¢~ (tjny) and I, < a(b+ 7). Let us observe that

In
Ju(zn) — u(p ()| < alb+ 7)Y fu(sT) — u(siy)
<c ¥ Ipu@)

&' € Ng(ptr) (Tn)

Since u € BD,(E"), we conclude that

u(@n) —ule™ )P <C > |DufP(a’) —0asn— oo
z'€Ng(b47)(Tn)

This implies that (v o ¢™)(t;n)) — u(y) # ¢ as n — oo. On the other hand,
we have

[u(p™ (t5)) —u(e™ (tim))] < pilﬂ(w_(zz"))—u(so‘(ZF_1))|

< ¢ Y D)

@' €N, (25)

for each subscript j € [j(n),j(n + 1)]. Hence we have

u(p™(t5) —ule™ ()P <C D |Duff(e’) —0asn— oo
' ENp(zn)

Thus (uo ™) (t;) — u(x) # ¢ as j — oo. Hence y belongs to Py ,-.

Since Ap(P3,,-) = 00, by the equivalent condition for a family of paths to
have infinite p-extremal length [4], there exists a nonnegative function w on the
edge set Eg of E such that } ;. p wP(€) = &p(w) < oo and Y ; gy w(€) =
oo for all paths y € P, ,-. For each positive integer ( and each edge e =
(21, 22] € Egr, let us define aset U(e, () = {€ = [a1,a2] € Eg : d(z;,9 (a5)) <
¢ for some 4,5 = 1,2}. Let us define a function w* on Eg in the following way:
w*(e) = sup; ey (e c) w(€)for all edges e € Ep. Since w**(e) < 3z cyy(e,c) w*(€)
for each edge e € Eg/, we have

Ep(w)<C T w(E) < oo,
écEg
where C is a positive constant depending on {. Let us fix a positive integer
k such that [tj_1,t;] € U([@n,Tnt1), k) for all j(n) < j < j(n + 1), where
y =(0,t1,t2,...,t5,...) is a path in Py ,- and x = (0,21, %2,...,%p,...) is a
path in P which are given above. Then for each path x € Py,

T w2 s T w@) =
p

e€E(x) E€E(y)
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Therefore, we have A,(P2) = co. This completes the proof. O
We are now ready to prove Theorem 4.1:

Proof of Theorem 4.1. Let u be a p-harmonic function in HBD,(G’). By Lem-
ma 4.2, the function o ¢~ is asymptotically constant for p-almost every path
in each p-hyperbolic end of G. Then, by Lemma 4.3, the function u is asymp-
totically constant for p-almost every path in each p-hyperbolic end of G’. This
completes the proof. ]

Combining Theorem 1.1 and Theorem 4.1, we get Theorem 1.2.
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