POSETS ADMITTING THE LINEARITY OF ISOMETRIES

Jong Youn Hyun, Jeonguin Kim, and Sang-Mok Kim

Abstract

In this paper, we deal with a characterization of the posets with the property that every poset isometry of \mathbb{F}_{q}^{n} fixing the origin is a linear map. We say such a poset to be admitting the linearity of isometries. We show that a poset P admits the linearity of isometries over \mathbb{F}_{q}^{n} if and only if P is a disjoint sum of chains of cardinality 2 or 1 when $q=2$, or P is an anti-chain otherwise.

1. Introduction

Let \mathbb{F}_{q} be a finite field with q elements, and \mathbb{F}_{q}^{n} the vector space of n-tuples over \mathbb{F}_{q}. In 1995, Brualdi et al. [1] introduced a non-Hamming metric on \mathbb{F}_{q}^{n} which is associated to an arbitrary poset on $[n]=\{1,2, \ldots, n\}$. It is called a poset metric. The poset metric spaces have been extensively studied in $[1,3,4,5,8]$. We briefly introduce basic notions for poset metric on \mathbb{F}_{q}^{n}.

Let $P=([n], \leq)$ be a poset on $[n]$ of coordinate positions of vectors on \mathbb{F}_{q}^{n}. A subset I of P is called an order ideal (or a down-set) if $x \in I$ and $y \leq x$ imply $y \in I$. For an arbitrary subset A of P, we denote by $\langle A\rangle$ the smallest order ideal of P containing A. The P-weight of a vector $u=\left(u_{1}, \ldots, u_{n}\right) \in \mathbb{F}_{q}^{n}$ is defined as the cardinality

$$
\begin{equation*}
w_{P}(u)=|\langle\operatorname{supp}(u)\rangle| \tag{1}
\end{equation*}
$$

of the smallest order ideal of P containing $\operatorname{supp}(u)$, where $\operatorname{supp}(u)=\left\{i \mid u_{i} \neq\right.$ $0\}$. For $u, v \in \mathbb{F}_{q}^{n}$, the P-distance $d_{P}(u, v)$ between u and v is defined by

$$
\begin{equation*}
d_{P}(u, v)=|\langle\operatorname{supp}(u-v)\rangle| . \tag{2}
\end{equation*}
$$

It is well known from [1] that d_{P} defines a metric on \mathbb{F}_{q}^{n}. If P is an anti-chain, then d_{P} coincides with the Hamming metric. Therefore, we may view that poset metric is a generalization of the Hamming metric. The theory of poset code generally plays with the properties of the poset metric space $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$.

The isometry group of $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$ is defined by
(3) $\quad \operatorname{Iso}_{P}\left(\mathbb{F}_{q}^{n}\right)=\left\{f: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n} \mid d_{P}(f(u), f(v))=d_{P}(u, v)\right.$ for all $\left.u, v \in \mathbb{F}_{q}^{n}\right\}$.

Received June 26, 2014; Revised October 31, 2014.
2010 Mathematics Subject Classification. 94B05.
Key words and phrases. P-isometries, P-isometry group, poset metric.

An element of the isometry group of $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$ is called a P-isometry of \mathbb{F}_{q}^{n}. It is easy to see that if f is a P-isometry of \mathbb{F}_{q}^{n}, then it is a bijective map. Moreover, it is easily seen that a linear transformation f of \mathbb{F}_{q}^{n} into itself preserves P-distance if and only if it preserves the P-weight. Thus we define the automorphism group of $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$, as follows:
(4)
$\operatorname{Aut}_{P}\left(\mathbb{F}_{q}^{n}\right)=\left\{f: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n} \mid f\right.$ is linear and $w_{P}(f(u))=w_{P}(u)$ for all $\left.u \in \mathbb{F}_{q}^{n}\right\}$.
An element of the automorphism group of $\left(\mathbb{F}_{q}^{n}, d_{P}\right)$ is called a P-automorphism of \mathbb{F}_{q}^{n}. It is obvious that $\operatorname{Aut}_{P}\left(\mathbb{F}_{q}^{n}\right)$ is a subgroup of $\operatorname{Iso}_{P}\left(\mathbb{F}_{q}^{n}\right)$.

In [8], Panek et al. determine the structure of such automorphism group Aut $_{P}\left(\mathbb{F}_{q}^{n}\right)$, as follows:

$$
\begin{equation*}
\operatorname{Aut}_{P}\left(\mathbb{F}_{q}^{n}\right) \simeq G(P) \rtimes \operatorname{Aut}(P) \tag{5}
\end{equation*}
$$

where, if $M_{n \times n}\left(\mathbb{F}_{q}\right)$ denotes the set of all $n \times n$ matrices over \mathbb{F}_{q}, then

$$
G(P)=\left\{\left(a_{i j}\right) \in M_{n \times n}\left(\mathbb{F}_{q}\right) \left\lvert\, a_{i j} \in \begin{array}{ccc}
\mathbb{F}_{q} & \text { if } & i<_{P} j \\
\mathbb{F}_{q}^{*} & \text { if } & i=j \\
\{0\} & & \text { otherwise }
\end{array}\right.\right\}
$$

and $\operatorname{Aut}(P)$ is the set of all order-preserving-bijections on P, i.e., $f \in \operatorname{Aut}(P)$ is a bijection on P, provided that if $x \leq y$, then $f(x) \leq f(y)$ for x and y in P. In contrast to the early settled result on $\operatorname{Aut}_{P}\left(\mathbb{F}_{q}^{n}\right)$, the generalized question on the structure of $\operatorname{Iso}_{P}\left(\mathbb{F}_{q}^{n}\right)$ is known to be very difficult, as described in [3, 7].

Now, we define $\operatorname{Iso}_{P}^{0}\left(\mathbb{F}_{q}^{n}\right)$ as the set of P-isometries of \mathbb{F}_{q}^{n} fixing the zero vector 0, i.e.,

$$
\begin{equation*}
\operatorname{Iso}_{P}^{0}\left(\mathbb{F}_{q}^{n}\right)=\left\{f: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n} \mid f \text { is a } P \text {-isometry and } f(\mathbf{0})=\mathbf{0}\right\} \tag{6}
\end{equation*}
$$

Note that $\operatorname{Aut}_{P}\left(\mathbb{F}_{q}^{n}\right)$ is a subgroup of $\operatorname{Iso}_{P}^{0}\left(\mathbb{F}_{q}^{n}\right)$, and it follows from $[3,8]$ that $\operatorname{Aut}_{P}\left(\mathbb{F}_{q}^{n}\right)=\operatorname{Iso}_{P}^{0}\left(\mathbb{F}_{q}^{n}\right)$ if P is an anti-chain. Conversely, it is worth studying to determine the posets P which satisfy the property that $\operatorname{Aut}_{P}\left(\mathbb{F}_{q}^{n}\right)=\operatorname{Iso}_{P}^{0}\left(\mathbb{F}_{q}^{n}\right)$. We now say that a poset P on $[n]$ admits the linearity of isometries over \mathbb{F}_{q}^{n} if $\operatorname{Aut}_{P}\left(\mathbb{F}_{q}^{n}\right)=\operatorname{Iso}_{P}^{0}\left(\mathbb{F}_{q}^{n}\right)$. In this paper, we characterize the posets on $[n]$ which admit the linearity of isometries over \mathbb{F}_{q}^{n}.

Before we state our main result, we give some terminologies in poset theory, as follows. For two disjoint poset $P=(X, \leq)$ and $Q=(Y, \leq)$, the disjoint sum $P+Q$ of P and Q denotes the ordered set on $X \bigcup Y$ such that $x \leq y$ if and only if either $x \leq y$ in P or $x \leq y$ in Q. The linear sum $P \oplus Q$ of P and Q is obtained from $P+Q$ by adding the new order relations $x \leq y$ for all $x \in X$ and $y \in Y$. We now state our main result.

Theorem 1.1. Let P be a poset on $[n]$. Then a poset P admits the linearity of isometries over \mathbb{F}_{q}^{n} if and only if P is a disjoint sum of chains of cardinality 2 or 1 when $q=2$, or P is an anti-chain otherwise.

2. Proof of Theorem 1.1

In this section we give a complete proof of Theorem 1.1. For convenience to prove, we define the simple notations for chains and anti-chains as follows. $\mathbf{1}$ denotes the poset with one element. The disjoint sum of $n \mathbf{1}$'s, written as $n \mathbf{1}$, denotes the anti-chain of cardinality n. The linear sum of $n \mathbf{1}$ ' s, written as \mathbf{n}, denotes the chain of cardinality n. We use the notation $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ to denote the canonical basis of \mathbb{F}_{2}^{n}.

We first begin with giving a proof of the theorem for the binary case by giving four consecutive propositions and their proofs. Among these propositions, we remark that Propositions $2.3,2.5$, and 2.6 can be also obtained from Theorems 3.3 and 3.9 in [3], through the long and complicate process. However, we now give more direct and simpler proofs, instead.

Proposition 2.1. If P contains $\mathbf{3}$ as a subposet, then $\operatorname{Aut}_{P}\left(\mathbb{F}_{2}^{n}\right)$ is a proper subgroup of $\operatorname{Iso}_{P}^{0}\left(\mathbb{F}_{2}^{n}\right)$.
Proof. We proceed by induction on n. Let P be a poset of cardinality n which contains $\mathbf{3}$ as a subposet. Recall that $\mathbf{3}$ is the poset on $[3]=\{1,2,3\}$ with order relation $1<2<3$. We take P_{3} to be $\mathbf{3}$ and define a function f_{3} of \mathbb{F}_{2}^{3} into \mathbb{F}_{2}^{3} by $f_{3}(\mathbf{0})=\mathbf{0}, f_{3}\left(e_{1}\right)=e_{1}, f_{3}\left(e_{2}\right)=e_{1}+e_{2}, f_{3}\left(e_{1}+e_{2}\right)=e_{2}, f_{3}\left(e_{3}\right)=e_{1}+e_{2}+e_{3}$, $f_{3}\left(e_{1}+e_{3}\right)=e_{2}+e_{3}, f_{3}\left(e_{2}+e_{3}\right)=e_{1}+e_{3}, f_{3}\left(e_{1}+e_{2}+e_{3}\right)=e_{3}$. It is easy to check that

$$
\begin{equation*}
d_{P_{3}}\left(f_{s}(u), f_{3}(v)\right)=\left\langle\operatorname{supp}\left(f_{3}(u)+f_{3}(v)\right)\right\rangle=\langle\operatorname{supp}(u+v)\rangle=d_{P_{3}}(u, v) \tag{7}
\end{equation*}
$$

for all $u, v \in \mathbb{F}_{2}^{3}$. Using (7), one has that f_{3} is a P-isometry of \mathbb{F}_{2}^{3} which is not a linear map (for example, $f_{3}\left(e_{2}+e_{3}\right)=e_{1}+e_{3} \neq e_{3}=f_{3}\left(e_{2}\right)+f_{3}\left(e_{3}\right)$). To avoid confusion, let $\langle A\rangle_{P}$ denote the order ideal of P generated by A. Assume that a poset P_{n} on $[n]$ and a function f_{n} of \mathbb{F}_{2}^{n} into \mathbb{F}_{2}^{n} have been constructed for which

$$
\begin{equation*}
\left\langle\operatorname{supp}\left(f_{n}(u)+f_{n}(v)\right)\right\rangle_{P_{n}}=\langle\operatorname{supp}(u+v)\rangle_{P_{n}} \tag{8}
\end{equation*}
$$

for all $u, v \in \mathbb{F}_{2}^{n}$. We define P_{n+1} as a poset on $[n+1]$ which contains P_{n} as a subposet, and a function $f_{n+1}: \mathbb{F}_{2}^{n+1} \rightarrow \mathbb{F}_{2}^{n+1}$ as follows:

$$
f_{n+1}(u)=\left\{\begin{array}{cl}
f_{n}(u) & \text { if } \operatorname{supp}(u) \subseteq[n] \\
f_{n}\left(u^{\prime}\right)+e_{n+1} & \text { if } u=u^{\prime}+e_{n+1}, \quad \operatorname{supp}\left(u^{\prime}\right) \subseteq[n]
\end{array}\right.
$$

Note that for subsets A, B of P_{n}, we have that

$$
\begin{equation*}
\langle A\rangle_{P_{n+1}}=\langle B\rangle_{P_{n+1}}, \tag{9}
\end{equation*}
$$

if $\langle A\rangle_{P_{n}}=\langle B\rangle_{P_{n}}$. Now we will prove by induction that

$$
\begin{equation*}
\left\langle\operatorname{supp}\left(f_{n+1}(u)+f_{n+1}(v)\right)\right\rangle_{P_{n+1}}=\langle\operatorname{supp}(u+v)\rangle_{P_{n+1}} \tag{10}
\end{equation*}
$$

for all $u, v \in \mathbb{F}_{2}^{n+1}$. We have three cases for these vectors u, v in \mathbb{F}_{2}^{n+1} :
Case 1: $\operatorname{supp}(u), \operatorname{supp}(v) \subseteq[n]$.
Case 2: $\operatorname{supp}(u) \subseteq[n], v=v^{\prime}+e_{n+1}, \operatorname{supp}\left(v^{\prime}\right) \subseteq[n]$.

Case 3: $u=u^{\prime}+e_{n+1}, \operatorname{supp}(u) \subseteq[n], v=v^{\prime}+e_{n+1}, \operatorname{supp}\left(v^{\prime}\right) \subseteq[n]$.
We only give a proof for Case 2 since the other cases can be treated similarly.
One has that

$$
\begin{aligned}
& \left\langle\operatorname{supp}\left(f_{n+1}(u)+f_{n+1}(v)\right)\right\rangle_{P_{n+1}} \\
= & \left\langle\operatorname{supp}\left(f_{n}\left(u^{\prime}\right)+f_{n}\left(v^{\prime}\right)+e_{n+1}\right)\right\rangle_{P_{n+1}} \\
= & \left\langle\operatorname{supp}\left(f_{n}\left(u^{\prime}\right)+f_{n}\left(v^{\prime}\right)\right)\right\rangle_{P_{n+1}} \cup\langle n+1\rangle_{P_{n+1}} \\
= & \left\langle\operatorname{supp}\left(u^{\prime}+v^{\prime}\right)\right\rangle_{P_{n+1}} \cup\langle n+1\rangle_{P_{n+1}}(\text { by (8), (9)) } \\
= & \left\langle\operatorname{supp}\left(u^{\prime}+v^{\prime}+e_{n+1}\right)\right\rangle_{P_{n+1}} \\
= & \langle\operatorname{supp}(u+v)\rangle_{P_{n+1}} .
\end{aligned}
$$

It follows from (10) that f_{n+1} is a P_{n+1}-isometry of \mathbb{F}_{2}^{n+1} which is not a linear map (for example, $f_{n+1}\left(e_{2}+e_{3}\right)=f_{3}\left(e_{2}+e_{3}\right) \neq f_{3}\left(e_{2}\right)+f_{3}\left(e_{3}\right)=f_{n+1}\left(e_{2}\right)+$ $\left.f_{n+1}\left(e_{3}\right)\right)$. This proves the proposition.

Let P be a poset on $[n]$. For an order ideal I of P, we denote by $\max (I)$ (resp. $\min (I)$) the set of maximal (resp. minimal) elements of I. For a subset A of P, we define $e_{A}=\sum_{i \in A} e_{i}$. By convention, $e_{\varnothing}=\mathbf{0}$.

We begin with the following simple lemma which follows easily from the definition of the P-distance.

Lemma 2.2. Let A, B be subsets of a poset P. If $\langle A\rangle \subseteq\langle B\rangle$ and $\max (\langle A\rangle) \cap$ $\max (\langle B\rangle)=\varnothing$, then $d_{P}\left(e_{A}, e_{B}\right)=w_{P}\left(e_{B}\right)$.

From now on, P is a poset which does not contain 3 as a subposet. Hence every subset A of P has a decomposition $A=B \cup C$, where $B=A \cap \max (P)$ and $C=A \cap \min (P)$ so that $e_{A}=e_{B}+e_{C}$.
Proposition 2.3. If P contains $1 \oplus 21$ as a subposet, then $\operatorname{Aut}_{P}\left(\mathbb{F}_{2}^{n}\right)$ is a proper subgroup of $\operatorname{Iso}_{P}^{0}\left(\mathbb{F}_{2}^{n}\right)$.
Proof. Let A be a subset of P. As mentioned above, we may write

$$
A=B \cup C, \text { where } B=A \cap \max (P) \text { and } C=A \cap \min (P) .
$$

Define a function f of \mathbb{F}_{2}^{n} into \mathbb{F}_{2}^{n} as follows:

$$
f\left(e_{A}\right)=f\left(e_{B}+e_{C}\right)=f\left(e_{B}\right)+e_{C},
$$

where

$$
f\left(e_{B}\right)=\left\{\begin{array}{cl}
e_{B}+\sum_{k, l \in B, k \neq l} e_{\langle k\rangle \cap\langle l\rangle} & \text { if }|B| \geq 2 \\
e_{B} & \text { otherwise }
\end{array}\right.
$$

First, we will show that f is a P-isometry of \mathbb{F}_{2}^{n}. For an arbitrary subset U of P, we put

$$
t_{U}=\sum_{k, l \in U, k \neq l} e_{\langle k\rangle \cap\langle l\rangle} .
$$

Then

$$
\begin{equation*}
\left\langle\operatorname{supp}\left(t_{U}\right)\right\rangle \subseteq\langle U\rangle \text { and } t_{U}=0 \text { if }|U| \leq 1 \tag{11}
\end{equation*}
$$

Let A^{\prime} be a subset of P such that

$$
A^{\prime}=B^{\prime} \cup C^{\prime}, \text { where } B^{\prime}=A^{\prime} \cap \max (P) \text { and } C^{\prime}=A^{\prime} \cap \min (P)
$$

It follows from the definition of f that

$$
\begin{align*}
d_{P}\left(f\left(e_{A}\right), f\left(e_{A^{\prime}}\right)\right) & =d_{P}\left(f\left(e_{B}+e_{C}\right), f\left(e_{B^{\prime}}+e_{C^{\prime}}\right)\right) \\
& =d_{P}\left(e_{B}+t_{B}+e_{C}, e_{B^{\prime}}+t_{B^{\prime}}+e_{C^{\prime}}\right) \\
& =d_{P}\left(e_{B} \Delta B^{\prime}+e_{C} \Delta C^{\prime}, t_{B}+t_{B^{\prime}}\right), \tag{12}
\end{align*}
$$

where $A \triangle B$ denote the symmetric difference of sets A and B. Note that $t_{B}+t_{B^{\prime}}$ can be represented by the sum of four parts as follows:

$$
\begin{equation*}
t_{B \backslash B^{\prime}}+t_{B^{\prime} \backslash B}+\sum_{k \in B \backslash B^{\prime}, l \in B \cap B^{\prime}} e_{\langle k\rangle \cap\langle l\rangle}+\sum_{k \in B^{\prime} \backslash B, l \in B \cap B^{\prime}} e_{\langle k\rangle \cap\langle l\rangle} \tag{13}
\end{equation*}
$$

Using (11) the supports of each part in the right hand side of (13) are contained in the order ideal generated by $B \Delta B^{\prime}$. By Lemma 2.2, (12) becomes $w_{P}\left(e_{B \Delta B^{\prime}}+e_{C} \Delta C^{\prime}\right)=d_{P}\left(e_{B \Delta B^{\prime}}, e_{C} \Delta C^{\prime}\right)=d_{P}\left(e_{A}, e_{A^{\prime}}\right)$. Next, we will show that f is not a linear map if P contains $\mathbf{1} \oplus 2 \mathbf{1}$. Let $\mathbf{1} \oplus 2 \mathbf{1}=\{j\} \oplus\left\{i_{1}, i_{2}\right\}$. For a contradiction, assume that f is a linear. Then

$$
e_{i_{1}}+e_{i_{2}}=f\left(e_{i_{1}}\right)+f\left(e_{i_{2}}\right)=f\left(e_{i_{1}}+e_{i_{2}}\right)=e_{i_{1}}+e_{i_{2}}+e_{\left\langle i_{1}\right\rangle \cap\left\langle i_{2}\right\rangle} .
$$

So we have $e_{\left\langle i_{1}\right\rangle \cap\left\langle i_{2}\right\rangle}=\varnothing$, i.e., $\left\langle i_{1}\right\rangle \cap\left\langle i_{2}\right\rangle=\varnothing$, a contradiction to $j \in\left\langle i_{1}\right\rangle \cap\left\langle i_{2}\right\rangle$. This proves the proposition.

The following lemma (See [2]) is essentially the same as that an anti-chain admits the linearity of isometries.

Lemma 2.4. Let f be a P-isometry of \mathbb{F}_{2}^{n} which fixes the origin. Let A be a subset of $\min (P)$. Then $f\left(e_{A}\right)=\sum_{i \in A} f\left(e_{i}\right)$.

From now on, we assume that P does not contain both $\mathbf{3}$ and $1 \oplus 21$. Therefore P is the disjoint union of $Q_{s} ' s$ and an anti-chain, where $Q_{s}=s \mathbf{1} \oplus \mathbf{1}$ $(s \geq 1)$.
Proposition 2.5. If P contains $2 \mathbf{1} \oplus 1$ as a subposet, then $\operatorname{Aut}_{P}\left(\mathbb{F}_{2}^{n}\right)$ is a proper subgroup of $\operatorname{Iso}_{P}^{0}\left(\mathbb{F}_{2}^{n}\right)$.

Proof. Let $s \geq 2$ and σ a nontrivial permutation on $\min \left(Q_{s}\right)$. Let us write $\sigma(u)$ for $\sum_{i \in \operatorname{Supp}(u)} e_{\sigma(i)}$. Define a map g of \mathbb{F}_{2}^{s+1} into \mathbb{F}_{2}^{s+1} by

$$
g(u)=\left\{\begin{array}{cl}
\sigma(u) & \text { if } \operatorname{supp}(u) \subseteq \min \left(Q_{s}\right) \\
u & \text { otherwise }
\end{array}\right.
$$

We claim that g is a Q_{s}-isometry which is not a linear map. If $\operatorname{supp}(u)$ and $\operatorname{supp}(v)$ are both subsets of the anti-chain $\min \left(Q_{s}\right)$, then by Lemma 2.4, σ can be extended to the Q_{s}-isometry of \mathbb{F}_{2}^{s+1} by fixing the maximal element of Q_{s}. If neither is a subset of $\min \left(Q_{s}\right)$, then $g(u)=u$ and $g(v)=v$, so $d_{Q_{s}}(g(u), g(v))=d_{Q_{s}}(u, v)$. Thus, to prove that g preserves the Q_{s}-distance, it is sufficient to consider vectors u, v in \mathbb{F}_{2}^{s+1} which satisfy $\operatorname{supp}(u) \subseteq \min \left(Q_{s}\right)$ and $\operatorname{supp}(v) \nsubseteq \min \left(Q_{s}\right)$. For such u and v in \mathbb{F}_{2}^{s+1}, one obtains $d_{P}(g(u), g(v))=$ $d_{P}(\sigma(u), v)=s+1=d_{P}(u, v)$. It remains to show that g is not a linear map. Let $\max \left(Q_{s}\right)=\{i\}$. Since σ is a nontrivial permutation on $\min \left(Q_{s}\right)$, there are distinct elements j, k in $\min \left(Q_{s}\right)$ such that $\sigma(j)=k$. From this, one has $g\left(e_{i}+e_{j}\right)=e_{i}+e_{j} \neq e_{i}+e_{k}=g\left(e_{i}\right)+g\left(e_{j}\right)$. This proves the claim. It follows from the assumption of the proposition that $P=Q_{s} \stackrel{\circ}{\cup} P^{\prime}$ with $s \geq 2$. We may write $u \in \mathbb{F}_{2}^{n}$ as $u=\left(u^{1}, u^{2}\right)$ with $\operatorname{supp}\left(u^{1}\right) \subseteq Q_{s}$ and $\operatorname{supp}\left(u^{2}\right) \subseteq P^{\prime}$. Define $f(u)=f\left(u^{1}, u^{2}\right)=\left(g\left(u^{1}\right), u^{2}\right)$. It is easy to see that f is a P-isometry which is not a linear map. This proves the proposition.

Now assume that P contains none of $\mathbf{3}, 2 \mathbf{1} \oplus \mathbf{1}, \mathbf{1} \oplus 2 \mathbf{1}$ as a subposet. Then $P=m \mathbf{1} \cup n \mathbf{2}$ for some $m, n \geq 0$.

Proposition 2.6. If $P=m \mathbf{1} \cup n \mathbf{~} \mathbf{~}$ for some $m, n \geq 0$, then every P-isometry of \mathbb{F}_{2}^{n} which fixes the origin is a linear map.

Proof. We will show that

$$
\begin{equation*}
f\left(e_{A}\right)=\sum_{i \in A} f\left(e_{i}\right) \tag{14}
\end{equation*}
$$

for any subset A of P. We proceed by induction on the cardinality of A. It is clear that (15) holds for every A with $|A|=1$. Assume that (15) holds for every subset of cardinality less than s and that $|A|=s$. If $A \subseteq \min (P)$, then the result follows from Lemma 2.4. So we may assume that $A \cap \max (P) \neq \varnothing$. Take an element $i \in A \cap \max (P)$. Since f is a bijection of \mathbb{F}_{2}^{n}, we may write

$$
\begin{equation*}
f\left(e_{A}\right)=f\left(e_{A \backslash\{i\}}+e_{i}\right)=f\left(e_{A \backslash\{i\}}\right)+f(u) \tag{15}
\end{equation*}
$$

for some $u \in \mathbb{F}_{2}^{n}$. By induction hypothesis,

$$
f\left(e_{A}\right)=\sum_{i \in A \backslash\{i\}} f\left(e_{i}\right)+f(u) .
$$

We claim that $u=e_{i}$. Since f preserves the P-distance, we obtain the following three relations from (15):

$$
\begin{gather*}
|\langle A\rangle|=d_{P}\left(e_{A \backslash\{i\}}, u\right), \tag{16}\\
2=|\langle i\rangle|=|\langle\operatorname{supp}(u)\rangle|, \tag{17}\\
w_{P}\left(e_{A}+u\right)=|\langle A \backslash\{i\}\rangle| . \tag{18}
\end{gather*}
$$

For example, the relation (17) is derived as follows:

$$
\begin{aligned}
|\langle i\rangle|=w_{P}\left(e_{i}\right) & =d_{P}\left(e_{A}, e_{A \backslash\{i\}}\right) \\
& =d_{P}\left(f\left(e_{A}\right), f\left(e_{A \backslash\{i\}}\right)\right) \text { (since } f \text { is a } P \text {-isometry) } \\
& =w_{P}\left(f\left(e_{A}\right)+f\left(e_{A \backslash\{i\}}\right)\right) \\
& =w_{P}(f(u))(\text { by }(15)) \\
& =w_{P}(u)(\text { since } f \text { is a } P \text {-isometry) } \\
& =|\langle\operatorname{supp}(u)\rangle| .
\end{aligned}
$$

Since $|\langle\operatorname{supp}(u)\rangle|=|\langle i\rangle|=2$, we have two possibilities:
(i) $\quad\langle\operatorname{supp}(u)\rangle=\langle k\rangle$ for some $k \in \max (P)$, and
(ii) $\operatorname{supp}(u)=\{k, l\}$ for some $k, l \in \min (P)$.

Notice that

$$
|\langle A \backslash\{i\}\rangle|= \begin{cases}|\langle A\rangle|-2 & \text { if }\langle i\rangle \nsubseteq A, \tag{21}\\ |\langle A\rangle|-1 & \text { if }\langle i\rangle \subseteq A .\end{cases}
$$

If (20) happens, by (18), we have $|\langle A \backslash\{i\}\rangle|=w_{P}\left(e_{A}+e_{k}+e_{l}\right) \geq|\langle A\rangle|$, a contradiction to (21). Thus (19) must hold. So we may write $u=e_{k}+a e_{l}$, $a \in \mathbb{F}_{2}$ and $l<k$ in P. It follows from (18) that

$$
\begin{equation*}
|\langle A \backslash\{i\}\rangle|=w_{P}\left(e_{A}+e_{k}+a e_{l}\right) . \tag{22}
\end{equation*}
$$

From (21) and (22) we deduce that $k \in A$. It now follows from (16) that

$$
\begin{equation*}
|\langle A\rangle|=d_{P}\left(e_{A \backslash\{i\}}, e_{k}+a e_{l}\right)=d_{P}\left(e_{(A \backslash\{i\})}+e_{k}, a e_{l}\right) . \tag{23}
\end{equation*}
$$

From (23) and $k \in A$ we deduce that $i=k$. From $i=k$ and (22) we see that

$$
|\langle A \backslash\{i\}\rangle|=w_{P}\left(e_{A \backslash\{i\}}+a e_{l}\right) \text { and } l<i \text { in } P .
$$

Therefore, $a=0$ and so $u=e_{k}$. This proves the proposition.
Theorem 1.1 follows from the four previous propositions.
Next, we deal with the q-ary case for $q>2$. Recall that the height of an element j in a poset P is the maximum of lengths of chains descending from j.

Proposition 2.7. Let P be a poset on $[n]$ and let $q>2$. Then P admits the linearity of isometries over \mathbb{F}_{q}^{n} if and only if P is an anti-chain.
Proof. As mentioned in Introduction, if P is an anti-chain, it admits the linearity of isometries over \mathbb{F}_{q}^{n}. Conversely, let P be a poset on $[n]$ which contains an element j of height one. Then we can choose a minimal element i in P so that $i<_{P} j$. We may assume that $i=1, j=2$. Define a function f of \mathbb{F}_{q}^{n} into \mathbb{F}_{q}^{n} by $f\left(e_{1}+e_{2}\right)=e_{2}, f\left(e_{2}\right)=e_{1}+e_{2}$ and $f(u)=u$ otherwise. It is easy to check that f is not a linear map. Indeed, $f\left(2 e_{2}\right)=2 e_{2} \neq 2\left(e_{1}+e_{2}\right)=2 f\left(e_{2}\right)$. To show that f is a P-isometry of \mathbb{F}_{q}^{n}, we just consider the following cases since the other cases are clearly satisfied: For $u \neq e_{2}, e_{2}+e_{1}$ we have $d_{P}\left(e_{1}, e_{2}+u\right)=w_{P}\left(e_{2}+u\right)$ by Lemma 2.2. Therefore,
we get $d_{P}\left(f\left(e_{2}\right), f(u)\right)=d_{P}\left(e_{2}, u\right)$ and $d_{P}\left(f\left(e_{1}+e_{2}\right), f(u)\right)=d_{P}\left(e_{1}+e_{2}, u\right)$. This proves the proposition.

Acknowledgment. The present research has been conducted by the Research Grant of Kwangwoon University in 2014.

References

[1] R. A. Brualdi, J. Graves, and K. M. Lawrence, Codes with a poset metric, Discrete Math. 147 (1995), no. 1-3, 57-72.
[2] H. Fripertinger, Enumeration of the semilinear isometry classes of linear codes, Bayreuth. Math. Schr. 74 (2005), 100-122.
[3] J. Y. Hyun, A subgroup of the full poset-isometry group, SIAM J. Discrete Math. 24 (2010), no. 2, 589-599.
[4] J. Y. Hyun and H. K. Kim, Maximum distance separable poset codes, Des. Codes Cryptogr. 48 (2008), no. 3, 247-261.
[5] H. K. Kim and D. S. Krotov, The poset metrics that allow binary codes of codimension m to be $m-$, $(m-1)$-, or $(m-2)$-perfect, IEEE Trans. Inform. Theory 54 (2008), no. 11, 5241-5246.
[6] F. J. MacWilliams and N. J. Sloane, The Theory of Error-Correcting Codes, NorthHolland, Amsterdam, 1998.
[7] L. Panek, M. Firer, and M. M. S. Alves, Symmetry groups of Rosenbloom-Tsfasman spaces, Discrete Math. 309 (2009), no. 4, 763-771.
[8] L. Panek, M. Firer, H. K. Kim, and J. Y. Hyun, Groups of linear isometries on poset structures, Discrete Math. 308 (2008), no. 18, 4116-4123.

Jong Youn Hyun
Institute of Mathematical Sciences
Ewha Womans University
Seoul 120-750, Korea
E-mail address: hyun33@postech.ac.kr
Jeonguin Kim
Department of Mathematics
Myungji University
Yongin 449-728, Korea
E-mail address: jjkim@mju.ac.kr
Sang-Mok Kim
Department of Mathematics
Kwangwoon University
Seoul 139-701, Korea
E-mail address: smkim@kw.ac.kr

