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POSETS ADMITTING THE LINEARITY OF ISOMETRIES

Jong Youn Hyun, Jeongjin Kim, and Sang-Mok Kim

Abstract. In this paper, we deal with a characterization of the posets
with the property that every poset isometry of Fn

q
fixing the origin is a

linear map. We say such a poset to be admitting the linearity of isome-

tries. We show that a poset P admits the linearity of isometries over Fn

q

if and only if P is a disjoint sum of chains of cardinality 2 or 1 when
q = 2, or P is an anti-chain otherwise.

1. Introduction

Let Fq be a finite field with q elements, and Fn
q the vector space of n-tuples

over Fq. In 1995, Brualdi et al . [1] introduced a non-Hamming metric on Fn
q

which is associated to an arbitrary poset on [n] = {1, 2, . . . , n}. It is called
a poset metric. The poset metric spaces have been extensively studied in
[1, 3, 4, 5, 8]. We briefly introduce basic notions for poset metric on Fn

q .
Let P = ([n],≤) be a poset on [n] of coordinate positions of vectors on Fn

q .
A subset I of P is called an order ideal (or a down-set) if x ∈ I and y ≤ x

imply y ∈ I. For an arbitrary subset A of P , we denote by 〈A〉 the smallest
order ideal of P containing A. The P -weight of a vector u = (u1, . . . , un) ∈ Fn

q

is defined as the cardinality

(1) wP (u) = |〈supp(u)〉|

of the smallest order ideal of P containing supp(u), where supp(u) = {i |ui 6=
0}. For u, v ∈ Fn

q , the P -distance dP (u, v) between u and v is defined by

(2) dP (u, v) = |〈supp(u− v)〉|.

It is well known from [1] that dP defines a metric on Fn
q . If P is an anti-chain,

then dP coincides with the Hamming metric. Therefore, we may view that
poset metric is a generalization of the Hamming metric. The theory of poset
code generally plays with the properties of the poset metric space (Fn

q , dP ).
The isometry group of (Fn

q , dP ) is defined by

(3) IsoP (F
n
q ) = {f : Fn

q → Fn
q | dP (f(u), f(v)) = dP (u, v) for all u, v ∈ Fn

q }.
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An element of the isometry group of (Fn
q , dP ) is called a P -isometry of Fn

q .
It is easy to see that if f is a P -isometry of Fn

q , then it is a bijective map.
Moreover, it is easily seen that a linear transformation f of Fn

q into itself pre-
serves P -distance if and only if it preserves the P -weight. Thus we define the
automorphism group of (Fn

q , dP ), as follows:
(4)
AutP (F

n
q ) = {f : Fn

q → Fn
q | f is linear and wP (f(u)) = wP (u) for all u ∈ Fn

q }.

An element of the automorphism group of (Fn
q , dP ) is called a P -automorphism

of Fn
q . It is obvious that AutP (F

n
q ) is a subgroup of IsoP (Fn

q ).
In [8], Panek et al . determine the structure of such automorphism group

AutP (Fn
q ), as follows:

(5) AutP (F
n
q ) ≃ G(P )⋊Aut(P ),

where, if Mn×n (Fq) denotes the set of all n× n matrices over Fq, then

G(P ) =







(aij) ∈ Mn×n (Fq)

∣

∣

∣

∣

∣

∣

aij ∈
Fq if i <P j

F∗
q if i = j

{0} otherwise







,

and Aut(P ) is the set of all order-preserving-bijections on P , i.e., f ∈ Aut(P )
is a bijection on P , provided that if x ≤ y, then f(x) ≤ f(y) for x and y in P .
In contrast to the early settled result on AutP (Fn

q ), the generalized question on
the structure of IsoP (Fn

q ) is known to be very difficult, as described in [3, 7].

Now, we define Iso0P (F
n
q ) as the set of P -isometries of Fn

q fixing the zero
vector 0, i.e.,

(6) Iso0P (F
n
q ) = {f : Fn

q → Fn
q | f is a P -isometry and f(0) = 0}.

Note that AutP (Fn
q ) is a subgroup of Iso0P (F

n
q ), and it follows from [3, 8] that

AutP (Fn
q ) = Iso0P (F

n
q ) if P is an anti-chain. Conversely, it is worth studying to

determine the posets P which satisfy the property that AutP (Fn
q ) = Iso0P (F

n
q ).

We now say that a poset P on [n] admits the linearity of isometries over Fn
q if

AutP (Fn
q ) = Iso0P (F

n
q ). In this paper, we characterize the posets on [n] which

admit the linearity of isometries over Fn
q .

Before we state our main result, we give some terminologies in poset theory,
as follows. For two disjoint poset P = (X,≤) and Q = (Y,≤), the disjoint sum
P + Q of P and Q denotes the ordered set on X

⋃

Y such that x ≤ y if and
only if either x ≤ y in P or x ≤ y in Q. The linear sum P ⊕Q of P and Q is
obtained from P + Q by adding the new order relations x ≤ y for all x ∈ X

and y ∈ Y . We now state our main result.

Theorem 1.1. Let P be a poset on [n]. Then a poset P admits the linearity

of isometries over Fn
q if and only if P is a disjoint sum of chains of cardinality

2 or 1 when q = 2, or P is an anti-chain otherwise.
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2. Proof of Theorem 1.1

In this section we give a complete proof of Theorem 1.1. For convenience
to prove, we define the simple notations for chains and anti-chains as follows.
1 denotes the poset with one element. The disjoint sum of n 1’s, written as
n1, denotes the anti-chain of cardinality n. The linear sum of n 1’s, written as
n, denotes the chain of cardinality n. We use the notation {e1, e2, . . . , en} to
denote the canonical basis of Fn

2 .
We first begin with giving a proof of the theorem for the binary case by giving

four consecutive propositions and their proofs. Among these propositions, we
remark that Propositions 2.3, 2.5, and 2.6 can be also obtained from Theorems
3.3 and 3.9 in [3], through the long and complicate process. However, we now
give more direct and simpler proofs, instead.

Proposition 2.1. If P contains 3 as a subposet, then AutP (Fn
2 ) is a proper

subgroup of Iso0P (F
n
2 ).

Proof. We proceed by induction on n. Let P be a poset of cardinality n which
contains 3 as a subposet. Recall that 3 is the poset on [3] = {1, 2, 3} with order
relation 1 < 2 < 3. We take P3 to be 3 and define a function f3 of F3

2 into F3
2 by

f3(0) = 0, f3(e1) = e1, f3(e2) = e1+e2, f3(e1+e2) = e2, f3(e3) = e1+e2+e3,
f3(e1 + e3) = e2 + e3, f3(e2 + e3) = e1 + e3, f3(e1 + e2 + e3) = e3. It is easy to
check that

(7) dP3
(fs(u), f3(v)) = 〈supp(f3(u) + f3(v))〉 = 〈supp(u+ v)〉 = dP3

(u, v)

for all u, v ∈ F3
2. Using (7), one has that f3 is a P -isometry of F3

2 which is not
a linear map (for example, f3(e2 + e3) = e1 + e3 6= e3 = f3(e2) + f3(e3)). To
avoid confusion, let 〈A〉P denote the order ideal of P generated by A. Assume
that a poset Pn on [n] and a function fn of Fn

2 into Fn
2 have been constructed

for which

(8) 〈supp(fn(u) + fn(v))〉Pn
= 〈supp(u + v)〉Pn

for all u, v ∈ Fn
2 . We define Pn+1 as a poset on [n+ 1] which contains Pn as a

subposet, and a function fn+1 : Fn+1
2 → Fn+1

2 as follows:

fn+1(u) =

{

fn(u) if supp(u) ⊆ [n],
fn(u

′) + en+1 if u = u′ + en+1, supp(u′) ⊆ [n].

Note that for subsets A,B of Pn, we have that

(9) 〈A〉Pn+1
= 〈B〉Pn+1

,

if 〈A〉Pn
= 〈B〉Pn

. Now we will prove by induction that

(10) 〈supp(fn+1(u) + fn+1(v))〉Pn+1
= 〈supp(u + v)〉Pn+1

for all u, v ∈ Fn+1
2 . We have three cases for these vectors u, v in Fn+1

2 :
Case 1: supp(u), supp(v) ⊆ [n].
Case 2: supp(u) ⊆ [n], v = v′ + en+1, supp(v

′) ⊆ [n].
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Case 3: u = u′ + en+1, supp(u) ⊆ [n], v = v′ + en+1, supp(v
′) ⊆ [n].

We only give a proof for Case 2 since the other cases can be treated similarly.
One has that

〈supp(fn+1(u) + fn+1(v))〉Pn+1

= 〈supp(fn(u
′) + fn(v

′) + en+1)〉Pn+1

= 〈supp(fn(u
′) + fn(v

′))〉Pn+1
∪ 〈n+ 1〉Pn+1

= 〈supp(u′ + v′)〉Pn+1
∪ 〈n+ 1〉Pn+1

(by (8), (9))

= 〈supp(u′ + v′ + en+1)〉Pn+1

= 〈supp(u+ v)〉Pn+1
.

It follows from (10) that fn+1 is a Pn+1-isometry of Fn+1
2 which is not a linear

map (for example, fn+1(e2 + e3) = f3(e2 + e3) 6= f3(e2) + f3(e3) = fn+1(e2) +
fn+1(e3)). This proves the proposition. �

Let P be a poset on [n]. For an order ideal I of P , we denote by max(I)
(resp. min(I)) the set of maximal (resp. minimal) elements of I. For a subset
A of P , we define eA =

∑

i∈A ei. By convention, e∅ = 0.
We begin with the following simple lemma which follows easily from the

definition of the P -distance.

Lemma 2.2. Let A,B be subsets of a poset P . If 〈A〉 ⊆ 〈B〉 and max(〈A〉) ∩
max(〈B〉) = ∅, then dP (eA, eB) = wP (eB).

From now on, P is a poset which does not contain 3 as a subposet. Hence
every subset A of P has a decomposition A = B ∪ C, where B = A ∩max(P )
and C = A ∩min(P ) so that eA = eB + eC .

Proposition 2.3. If P contains 1 ⊕ 21 as a subposet, then AutP (Fn
2 ) is a

proper subgroup of Iso0P (F
n
2 ).

Proof. Let A be a subset of P . As mentioned above, we may write

A = B ∪ C, where B = A ∩max(P ) and C = A ∩min(P ).

Define a function f of Fn
2 into Fn

2 as follows:

f(eA) = f(eB + eC) = f(eB) + eC ,

where

f(eB) =

{

eB +
∑

k,l∈B,k 6=l

e〈k〉∩〈l〉 if |B| ≥ 2,

eB otherwise.

First, we will show that f is a P -isometry of Fn
2 . For an arbitrary subset U of

P , we put

tU =
∑

k,l∈U,k 6=l

e〈k〉∩〈l〉.
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Then

〈supp(tU )〉 ⊆ 〈U〉 and tU = 0 if |U | ≤ 1.(11)

Let A′ be a subset of P such that

A′ = B′ ∪ C′, where B′ = A′ ∩max(P ) and C′ = A′ ∩min(P ).

It follows from the definition of f that

dP (f(eA), f(eA′)) = dP (f(eB + eC), f(eB′ + eC′))

= dP (eB + tB + eC , eB′ + tB′ + eC′)

= dP (eB
a

B′ + eC
a

C′ , tB + tB′),(12)

where A
a
B denote the symmetric difference of sets A and B. Note that

tB + tB′ can be represented by the sum of four parts as follows:

(13) tB\B′ + tB′\B +
∑

k∈B\B′,l∈B∩B′

e〈k〉∩〈l〉 +
∑

k∈B′\B,l∈B∩B′

e〈k〉∩〈l〉.

Using (11) the supports of each part in the right hand side of (13) are con-
tained in the order ideal generated by B

a
B′. By Lemma 2.2, (12) becomes

wP (eB
a

B′ + eC
a

C′) = dP (eB
a

B′ , eC
a

C′) = dP (eA, eA′). Next, we will show
that f is not a linear map if P contains 1 ⊕ 21. Let 1 ⊕ 21 = {j} ⊕ {i1, i2}.
For a contradiction, assume that f is a linear. Then

ei1 + ei2 = f(ei1) + f(ei2) = f(ei1 + ei2) = ei1 + ei2 + e〈i1〉∩〈i2〉.

So we have e〈i1〉∩〈i2〉 = ∅, i.e., 〈i1〉∩ 〈i2〉 = ∅, a contradiction to j ∈ 〈i1〉∩ 〈i2〉.
This proves the proposition. �

The following lemma (See [2]) is essentially the same as that an anti-chain
admits the linearity of isometries.

Lemma 2.4. Let f be a P -isometry of Fn
2 which fixes the origin. Let A be a

subset of min(P ). Then f(eA) =
∑

i∈A f(ei).

From now on, we assume that P does not contain both 3 and 1 ⊕ 21.
Therefore P is the disjoint union of Qs’s and an anti-chain, where Qs = s1⊕1

(s ≥ 1).

Proposition 2.5. If P contains 21 ⊕ 1 as a subposet, then AutP (Fn
2 ) is a

proper subgroup of Iso0P (F
n
2 ).

Proof. Let s ≥ 2 and σ a nontrivial permutation on min(Qs). Let us write
σ(u) for

∑

i∈supp(u) eσ(i). Define a map g of Fs+1
2 into Fs+1

2 by

g(u) =

{

σ(u) if supp(u) ⊆ min(Qs),
u otherwise.
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We claim that g is a Qs-isometry which is not a linear map. If supp(u) and
supp(v) are both subsets of the anti-chain min(Qs), then by Lemma 2.4, σ
can be extended to the Qs-isometry of Fs+1

2 by fixing the maximal element
of Qs. If neither is a subset of min(Qs), then g(u) = u and g(v) = v, so
dQs

(g(u), g(v)) = dQs
(u, v). Thus, to prove that g preserves the Qs-distance,

it is sufficient to consider vectors u, v in Fs+1
2 which satisfy supp(u) ⊆ min(Qs)

and supp(v) * min(Qs). For such u and v in Fs+1
2 , one obtains dP (g(u), g(v)) =

dP (σ(u), v) = s+ 1 = dP (u, v). It remains to show that g is not a linear map.
Let max(Qs) = {i}. Since σ is a nontrivial permutation on min(Qs), there
are distinct elements j, k in min(Qs) such that σ(j) = k. From this, one has
g(ei + ej) = ei + ej 6= ei + ek = g(ei) + g(ej). This proves the claim. It follows

from the assumption of the proposition that P = Qs

◦
∪ P ′ with s ≥ 2. We may

write u ∈ Fn
2 as u = (u1, u2) with supp(u1) ⊆ Qs and supp(u2) ⊆ P ′. Define

f(u) = f(u1, u2) = (g(u1), u2). It is easy to see that f is a P -isometry which
is not a linear map. This proves the proposition. �

Now assume that P contains none of 3, 21⊕ 1,1⊕ 21 as a subposet. Then

P = m1
◦
∪ n2 for some m,n ≥ 0.

Proposition 2.6. If P = m1
◦
∪ n2 for some m,n ≥ 0, then every P -isometry

of Fn
2 which fixes the origin is a linear map.

Proof. We will show that

(14) f(eA) =
∑

i∈A

f(ei)

for any subset A of P . We proceed by induction on the cardinality of A. It
is clear that (15) holds for every A with |A| = 1. Assume that (15) holds for
every subset of cardinality less than s and that |A| = s. If A ⊆ min(P ), then
the result follows from Lemma 2.4. So we may assume that A ∩max(P ) 6= ∅.
Take an element i ∈ A ∩max(P ). Since f is a bijection of Fn

2 , we may write

(15) f(eA) = f(eA\{i} + ei) = f(eA\{i}) + f(u)

for some u ∈ Fn
2 . By induction hypothesis,

f(eA) =
∑

i∈A\{i}

f(ei) + f(u).

We claim that u = ei. Since f preserves the P -distance, we obtain the following
three relations from (15):

(16) |〈A〉| = dP (eA\{i}, u),

(17) 2 = |〈i〉| = |〈supp(u)〉|,

(18) wP (eA + u) = |〈A \ {i}〉|.



POSETS ADMITTING THE LINEARITY OF ISOMETRIES 1005

For example, the relation (17) is derived as follows:

|〈i〉| = wP (ei) = dP (eA, eA\{i})

= dP (f(eA), f(eA\{i})) (since f is a P -isometry)

= wP (f(eA) + f(eA\{i}))

= wP (f(u)) (by (15))

= wP (u) (since f is a P -isometry)

= |〈supp(u)〉|.

Since |〈supp(u)〉| = |〈i〉| = 2, we have two possibilities:

(19) (i) 〈supp(u)〉 = 〈k〉 for some k ∈ max(P ), and

(20) (ii) supp(u) = {k, l} for some k, l ∈ min(P ).

Notice that

(21) |〈A \ {i}〉| =

{

|〈A〉| − 2 if 〈i〉 * A,

|〈A〉| − 1 if 〈i〉 ⊆ A.

If (20) happens, by (18), we have |〈A \ {i}〉| = wP (eA + ek + el) ≥ |〈A〉|, a
contradiction to (21). Thus (19) must hold. So we may write u = ek + ael,
a ∈ F2 and l < k in P . It follows from (18) that

(22) |〈A \ {i}〉| = wP (eA + ek + ael).

From (21) and (22) we deduce that k ∈ A. It now follows from (16) that

(23) |〈A〉| = dP (eA\{i}, ek + ael) = dP (e(A\{i}) + ek, ael).

From (23) and k ∈ A we deduce that i = k. From i = k and (22) we see that

|〈A \ {i}〉| = wP (eA\{i} + ael) and l < i in P.

Therefore, a = 0 and so u = ek. This proves the proposition. �

Theorem 1.1 follows from the four previous propositions.
Next, we deal with the q-ary case for q > 2. Recall that the height of an

element j in a poset P is the maximum of lengths of chains descending from j.

Proposition 2.7. Let P be a poset on [n] and let q > 2. Then P admits the

linearity of isometries over Fn
q if and only if P is an anti-chain.

Proof. As mentioned in Introduction, if P is an anti-chain, it admits the
linearity of isometries over Fn

q . Conversely, let P be a poset on [n] which
contains an element j of height one. Then we can choose a minimal ele-
ment i in P so that i <P j. We may assume that i = 1, j = 2. De-
fine a function f of Fn

q into Fn
q by f(e1 + e2) = e2, f(e2) = e1 + e2 and

f(u) = u otherwise. It is easy to check that f is not a linear map. Indeed,
f(2e2) = 2e2 6= 2(e1 + e2) = 2f(e2). To show that f is a P -isometry of Fn

q , we
just consider the following cases since the other cases are clearly satisfied: For
u 6= e2, e2 + e1 we have dP (e1, e2 + u) = wP (e2 + u) by Lemma 2.2. Therefore,



1006 J. Y. HYUN, J. KIM, AND S.-M. KIM

we get dP (f(e2), f(u)) = dP (e2, u) and dP (f(e1 + e2), f(u)) = dP (e1 + e2, u).
This proves the proposition. �
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