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WEAK NORMAL PROPERTIES OF PARTIAL ISOMETRIES

Ting Liu, Yanying Men, and Sen Zhu

Abstract. This paper describes when a partial isometry satisfies several

weak normal properties. Topics treated include quasi-normality, subnor-

mality, hyponormality, p-hyponormality (p > 0), w-hyponormality, para-
normality, normaloidity, spectraloidity, the von Neumann property and

Weyl’s theorem.

1. Introduction

Throughout this paper, H will always denote a complex separable infinite
dimensional Hilbert space endowed with the inner product 〈·, ·〉. Denote by
B(H) the algebra of all bounded linear operators on H. For A ∈ B(H), we
denote by kerA and ran A the kernel of A and the range of A, respectively.

Recall that an operator T ∈ B(H) is called a partial isometry if ‖Tx‖ = ‖x‖
for all x ∈ (kerT )⊥. The space (kerT )⊥ is called the initial space of T , and
ran T is called the final space of T . Examples of partial isometries include
isometries, unitary operators, projections and their direct sums.

Partial isometries appear in the polar decomposition and play a basic role in
many aspects of operator theory and operator algebras. Universal C∗-algebras
generated by families of partial isometries subject to certain relations provide
many important examples of C∗-algebras. For example, the Cuntz algebra is
the universal C∗-algebra generated by n isometries satisfying certain relations.

Besides the polar decomposition, general operators on Hilbert spaces can be
associated with partial isometries in the following way. Let A ∈ B(H) with
‖A‖ ≤ 1. Denote

R(A) =

[
A 0√

I −A∗A 0

]
H
H.

Then it is easy to verify that R(A) is a partial isometry on H⊕H. Conversely,
if T is a partial isometry, then the compression of T to its initial space is a
contraction.
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Previous results show that questions concerning general operators sometimes
can be reduced to that concerning partial isometries. By a result of Halmos and
McLaughlin [9], if A and B are invertible contractions, then they are unitarily
equivalent if and only if R(A) and R(B) are unitarily equivalent. Thus the
problem of unitary equivalence for arbitrary operators on H can be reduced to
that for partial isometries. Garcia and Wogen proved in [7] that a contraction
A is complex symmetric if and only if so is R(A); the third author of the present
paper proved in [16] that A is the norm limit of complex symmetric operators if
and only if so is R(A). After observing these interesting results, it is natural to
seek more such results, which could reflect connections between A and R(A).

The aim of this paper is to explore connections between contractions A and
their extensions R(A) by examining various weak normal properties. Topics
treated here include quasi-normality, subnormality, hyponormality, w-hypo-
normality, p-hyponormality for p > 0, paranormality, normaloidity, spectraloid-
ity, the von Neumann property and Weyl’s theorem. Now we make a brief
introduction to these notions.

The class of normal operators is undoubtedly the best understood among
various classes of operators on Hilbert spaces. One of the grand themes in
operator theory is to generalize the theory of normal operators. Many gener-
alization of normal operators are hence posed and studied.

Definition 1.1. Let T ∈ B(H).

(i) T is said to be quasi-normal if T (T ∗T ) = (T ∗T )T.
(ii) T is said to be subnormal if there is a Hilbert space K containing H

and a normal operator N on K such that N(H) ⊆ H and N |H = T.
(iii) T is said to be hyponormal if T ∗T ≥ TT ∗.
(iv) T is said to be paranormal if ‖T 2x‖ ≥ ‖Tx‖2 for any unit vector x ∈ H.
(v) T is said to be p-hyponormal for p > 0 if (T ∗T )p ≥ (TT ∗)p.

(vi) T is said to be w-hyponormal if |T̃ | ≥ |T | ≥ |T̃ ∗|, where T̃ = |T | 12U |T | 12
and T = U |T | is the polar decomposition of T.

Most of these weak normal properties appearing in the preceding defini-
tion are defined in terms of operator inequalities, and it is easy to check that
normality implies each of them.

We shall show in Section 2 that a partial isometry T satisfies any one of the
above mentioned properties if and only if ran T ⊂ (kerT )⊥ (see Proposition
2.1). As a consequence, this shows for a contraction A that these properties of
R(A) imply but are not equivalent to that of A (see Example 2.4).

There are some other notions which can be viewed as generalizations of the
notion of normality.

Let T ∈ B(H). The numerical range of T is defined asW (T ) = {〈Tx, x〉 : x ∈
H with ‖x‖ = 1}, and the numerical radius of T is w(T ) = sup{|z| : z ∈W (T )}.
We denote by r(T ) the spectral radius of T , that is, r(T ) = max{|z| : z ∈ σ(T )}.

If T ∈ B(H) is normal, then it is well known that ‖T‖ = r(T ) = w(T ).
Generalizing the equality, people obtain the following notions.
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Definition 1.2. Let T ∈ B(H).

(i) T is said to be normaloid if w(T ) = ‖T‖.
(ii) T is said to be spectraloid if w(T ) = r(T ).
(iii) T is called a von Neumann operator if f(T ) is normaloid for each f

analytic on some neighborhood of σ(T ).

Note that an operator T is normaloid if and only if ‖T‖ = r(T ). Also it is
known that the normaloid property implies the spectraloid property. However,
there exist spectraloid operators that are not normaloid. For example, if the
following matrix

T =

0 1 0
0 0 0
0 0 1

2


viewed as an operator on C3, then r(T ) = w(T ) = 1

2 < 1 = ‖T‖. The reader is
referred to [8, Problems 218 & 219] for more details.

The von Neumann property essentially describes the property of normal
operators that the functional calculus of a normal operator with respect to an-
alytic functions is isometric. In this sense, the class of von Neumann operators
is a generalization of normal operators. Every subnormal operator satisfies the
von Neumann property ([4, Proposition II.9.2]).

We shall describe in Section 3 when a partial isometry satisfies the properties
appearing in Definition 1.2 (see Theorems 3.1 and 3.8). In particular, as an
application, we shall see that these three kinds of properties of R(A) imply
but are not equivalent to that of A. Also our result shows that the normaloid
property and the spectraloid property are equivalent for partial isometries.

Finally we shall consider another kind of spectral property, which can be
also viewed as a weak normal property. For T ∈ B(H), the Weyl spectrum of
T is the set

σw(T ) =
⋂

K∈K(H)

σ(T +K).

Here K(H) denotes the set of all compact operators on H. If A ∈ B(H) is
normal, a theorem of H. Weyl [14] states that σw(A) consists of all spectral
points except isolated eigenvalues of finite multiplicity. Coburn [2] proved that
Weyl’s theorem holds for two classes of nonnormal operators, the hyponormal
operators and the Toeplitz operators. Inspired by the results, many work are
devoted to the study of Weyl’s theorem for more classes of operators (e.g.
[1, 5, 6, 10]).

In Section 4, we shall describe when a partial isometry T satisfies Weyl’s
theorem (see Theorem 4.1). Our result shows that if a contraction A satisfies
Weyl’s theorem, then so does R(A). However, the converse does not hold (see
Example 4.3).
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2. Weak normal properties

This section is devoted to describing when a partial isometry satisfies those
properties appearing in Definition 1.1.

The main result of this section is the following proposition.

Proposition 2.1. If T ∈ B(H) is a partial isometry, then the following state-
ments are equivalent:

(i) T is hyponormal;
(ii) T is p-hyponormal for p > 0;
(iii) T is paranormal;
(iv) T is quasi-normal;
(v) T is subnormal;
(vi) T is w-hyponormal;

(vii) kerT reduces T ;
(viii) ran T ⊂ (kerT )⊥.

Proof. Since kerT is invariant under T , we may assume that

(1) T =

[
A 0
B 0

]
(kerT )⊥

kerT.

If kerT = {0} or H, then either T is an isometry or T = 0; hence T
clearly satisfies any one of (i)-(viii). So, in the sequel, we directly assume that
{0} ( kerT ( H.

“(vii)⇐⇒(viii)”. From the matrix representation (1) of T , one can check
that kerT reduces T if and only if B = 0 if and only if ran T ⊂ (kerT )⊥.

“(vii)=⇒ (iv)”. From the proof of “(vii)⇐⇒(viii)”, one can see that B = 0.
Since T ∗T is the projection onto (kerT )⊥ and

T ∗T =

[
A∗A+B∗B 0

0 0

]
(kerT )⊥

kerT
=

[
A∗A 0

0 0

]
(kerT )⊥

kerT,

it follows that A∗A is the identity on (kerT )⊥, that is, A is an isometry. So
both T and A are quasi-normal.

Likewise, one can prove that (vii) implies any one of (i)-(vi).
“(i)⇐⇒(ii)”. Since T is a partial isometry, it follows that both T ∗T and TT ∗

are projections. Then, for any p > 0, we have (T ∗T )p = T ∗T and (TT ∗)p =
TT ∗. Then the equivalence “(i)⇐⇒(ii)” follows readily.

“(i)=⇒(vii)”. Since T is hyponormal, we have T ∗T ≥ TT ∗. Since both TT ∗

and T ∗T are projections, it follows ran TT ∗ ⊆ ran T ∗T = (kerT )⊥. Note that

TT ∗ =

[
AA∗ AB∗

BA∗ BB∗

]
.

So BB∗ = 0. Thus B = 0.
“(iii)=⇒(vii)”. For every x ∈ (kerT )⊥ with ‖x‖ = 1, we have

T 2x =

(
A2x
BAx

)
= T (Ax).
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Note that x,Ax ∈ (kerT )⊥ and A is a contraction. So

1 ≥ ‖Ax‖ = ‖T 2x‖ ≥ ‖Tx‖2 = ‖x‖2 = 1.

That is, ‖Ax‖ = ‖x‖ for all x ∈ (kerT )⊥. So A is an isometry, which means
that B = 0.

“(iv)=⇒(vii) & (v)=⇒(vii)”. It is well known that “(iv)=⇒(v)=⇒(i)”. Since
“(i)=⇒(vii)” has been proved, we are done.

“(vi)⇐⇒(vii)”. Direct calculation shows that

|T | =
[
I 0
0 0

]
(kerT )⊥

kerT,
|T̃ | =

[
|A| 0
0 0

]
(kerT )⊥

kerT,

where I is the identity operator on (kerT )⊥. Since T is w-hyponormal, it
follows that |A| ≥ I. Note that ‖A‖ ≤ 1. So |A| = I. Then A∗A = I or
equivalently A is an isometry, which implies that B = 0. �

Corollary 2.2. If T is a partial isometry with {0} ( kerT ( H, then T is
hyponormal if and only if T = S ⊕ 0 for some isometry S.

Corollary 2.3. If T is a partial isometry with {0} ( kerT ( H, then T is
normal if and only if ran T = (kerT )⊥ if and only if T = U ⊕ 0 for some
unitary operator U .

We conclude this section with an example, which shows for a contraction A
that the weak normal properties of A defined in Definition 1.1 does not imply
that of R(A).

Example 2.4. Let A = I/2, where I is the identity operator on H. Then A
is normal. However R(A) does not satisfy any weak normal properties defined
in Definition 1.1.

3. Normaloidity, spectraloidity and the von Neumann property

In this section we shall describe when a partial isometry satisfies those prop-
erties appearing in Definition 1.2.

3.1. Normaloidity and spectraloidity

The main result of this subsection is the following theorem which describes
normaloid and spectraloid partial isometries.

Theorem 3.1. Let T ∈ B(H) be a nonzero partial isometry. Then the following
are equivalent:

(i) T is normaloid;
(ii) T is spectraloid;
(iii) T |(kerT )⊥ is normaloid with norm 1.

In order to give the proof of Theorem 3.1, we need to make some preparation.



1494 T. LIU, Y. MEN, AND S. ZHU

Lemma 3.2. (i) If {Tn}∞n=0⊂B(H) and Tn → T0, then w(T0)≤ lim infn w(Tn).
(ii) Let T ∈ B(C2) be written as [

λ 0
µ 0

]
relative to some orthonormal basis of C2, where |λ|2 + |µ|2 = 1. Then w(T ) =
1
2 (1 + |λ|).

Proof. (i) For any unit vector x ∈ H, we have

w(Tn) ≥ |〈Tnx, x〉| → |〈T0x, x〉|.
Thus lim infn w(Tn) ≥ |〈T0x, x〉|. Since x can be any unit vector, the desired
result follows readily.

(ii) This is a corollary of [13, Theorem 2.14]. �

Lemma 3.3. Let T ∈ B(H) be a nonzero partial isometry and

T =

[
A 0
B 0

]
(kerT )⊥

kerT.

Then σ(T ) ∪ {0} = σ(A) ∪ {0} and r(T ) = r(A).

Proof. Obviously we may directly assume that kerT 6= {0}.
Let λ ∈ C \ {0}. Straightforward calculation shows that

ker(T − λ) =

{(
x
Bx
λ

)
: x ∈ ker(A− λ)

}
.

Thus

(2) dim ker(λ−A) = dim ker(λ− T ).

As a consequence, λ− A is injective if and only if λ− T is injective. Likewise
one can prove that dim ker(λ−A)∗ = dim ker(λ− T )∗.

Since λ 6= 0, it follows that

(3) ran (λ− T ) = ran (λ−A)⊕ kerT.

Thus λ− A is surjective if and only if λ− T is surjective. This combining (2)
implies that λ ∈ σ(T ) if and only if λ ∈ σ(A). Hence σ(T )∪ {0} = σ(A)∪ {0}.
Moreover, we obtain r(T ) = r(A). �

Let T ∈ B(H). Recall that T is called a semi-Fredholm operator, if ran T
is closed and either dim kerT or dim kerT ∗ is finite; in this case, ind T :=
dim kerT − dim kerT ∗ is called the index of T . In particular, if T is semi-
Fredholm of finite index, then T is called a Fredholm operator. The Wolf
spectrum of T is defined by

σlre(T ) = {λ ∈ C : T − λ is not semi-Fredholm}.
Given a subset σ of C, we let iso σ, int σ and ∂σ denote respectively the set

of all isolated points of σ, the set of all interior points of σ and the boundary
of σ.
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Lemma 3.4 ([3, Theorem XI.6.8]). If S ∈ B(H) and λ ∈ ∂σ(S), then either
λ ∈ iso σ(S) or λ ∈ σlre(S).

Lemma 3.5 ([3, Proposition XI.6.9]). If S ∈ B(H) and λ ∈ iso σ(S), then the
following statements are equivalent.

(i) λ /∈ σlre(S).
(ii) The Riesz idempotent corresponding to the singleton λ has finite rank.
(iii) S − λ is Fredholm and ind (S − λ) = 0.

Lemma 3.6. Let T ∈ B(H) and λ ∈ ∂σ(T ). Then, given ε > 0, there exists a
compact operator K with ‖K‖ < ε such that

T −K =

[
λ ∗
0 A

]
Ce

H	 Ce,

where e ∈ H with ‖e‖ = 1.

Proof. If λ ∈ σlre(T ), then the result follows from [12, Lemma 3.2.6]. If λ /∈
σlre(T ), then, by Lemmas 3.5 and 3.4, λ is an eigenvalue of T ; in this case, we
choose a unit vector e ∈ ker(T − λ). The proof is complete. �

Proof of Theorem 3.1. If kerT = {0}, then T is an isometry and the conclusion
is clear. In the sequel, we assume that {0} ( kerT ( H.

“(i)=⇒(ii)”. By [8, Problem 218], the implication is clear.
“(iii)=⇒(i)”. Denote A = T |(kerT )⊥ . Then A is a contraction and, by

Lemma 3.3, r(T ) = r(A) = ‖A‖ = 1 = ‖T‖.
“(ii)=⇒(iii)”. Denote H1 = (kerT )⊥ and H2 = kerT . Then T can be

written as

T =

[
A 0
B 0

]
H1

H2.

It suffices to prove that r(A) = 1.
For a proof by contradiction, we assume that r(A) < 1. Then there exists

λ ∈ ∂σ(A) such that |λ| = r(A). By Lemma 3.6, for any n ≥ 1, there exist
unit vector en ∈ H and compact Kn ∈ B(H1) with ‖Kn‖ < 1/n such that

A−Kn =

[
λ ∗
0 ∗

]
Cen

H1 	 Cen.

Denote E = A−Kn. Then

T =

[
E +Kn 0
B 0

]
H1

H2.

Set fn = Ben and µn = ‖fn‖. Note that Kn → 0, |λ| < 1 and

1 = ‖Ten‖2 = ‖Een +Knen‖2 + ‖Ben‖2 = ‖λen +Knen‖2 + ‖Ben‖2.

Thus µn 6= 0 for n large enough and µn →
√

1− |λ|2. We directly assume that
fn 6= 0 for all n. Denote gn = fn/‖fn‖ and an = 〈Knen, en〉. Then T can be
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written as

T =


λ+ an ∗ 0 0
∗ ∗ 0 0
µn ∗ 0 0
0 ∗ 0 0


Cen

H1 	 Cen
Cgn

H2 	 Cgn.
Denote

Xn =

[
λ+ an 0
µn 0

]
, n ≥ 1.

Then W (Xn) ⊂W (T ) and

Xn −→
[

λ 0√
1− |λ|2 0

]
, X.

In view of Lemma 3.2, we have

w(T ) ≥ lim inf
n

w(Xn) ≥ w(X) =
1

2
(1 + |λ|) > |λ| = r(A) = r(T ).

That is, T is not spectraloid, a contradiction. �

Example 3.7. Let A = I/2, where I is the identity operator on H. Then A
is normal and

R(A) =

[
I/2 0√
3I/2 0

]
.

It is obvious that ‖R(A)‖ = 1, r(R(A)) = 1/2 and, by Lemma 3.2, w(R(A)) =
3/4. So

‖R(A)‖ > w(R(A)) > r(R(A)).

Thus R(A) is neither normaloid nor spectraloid.

3.2. The von Neumann property

The aim of this subsection is to prove the following theorem which gives
a necessary and sufficient condition for partial isometries to be von Neumann
operators.

Theorem 3.8. A partial isometry T is a von Neumann operator if and only
if either T is normal or σ(T ) = D, where D = {z ∈ C : |z| < 1}.

We list some results that we shall use in the proof of Theorem 3.8.

Lemma 3.9 ([4, page 176, Cor. 3.7]). If T ∈ B(H) is a von Neumann operator
and Area (σ(T )) = 0, then T is normal. Here Area denotes area measure.

Lemma 3.10 ([15, Theorem 1.4]). Let T ∈ B(H) be a von Neumann operator.
If λ ∈ ∂σ(T ), then T ∼=a λ ⊕ C for some operator C, where λ acts on some
Hilbert space of dimension 1 and ∼=a denotes approximate unitary equivalence.
That is, there exist unitary operators Un such that UnTU

∗
n → λ⊕ C.

Lemma 3.11 ([15, Corollary 4.7]). If T ∈ B(H) and σ(T ) = {z ∈ C : |z| ≤ δ}
for some δ ≥ 0, then T is a von Neumann operator if and only if T is normaloid.
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Proof of Theorem 3.8. “⇐=”. A normal operator is always a von Neumann
operator. So we assume that σ(T ) = D. Then r(T ) = 1 = ‖T‖. So, by Lemma
3.11, T is a von Neumann operator.

“=⇒”. Now assume that T is a von Neumann operator. If kerT = H, then
T = 0, a normal operator. If kerT = {0}, then T is an isometry and T is the
direct sum of a unitary operator and a unilateral shift (either may be absent).
So either T is normal or σ(T ) = D. Now it remains to treat the case that
{0} ( kerT ( H. Clearly we have r(T ) = ‖T‖ = 1, since T 6= 0 and T is
normaloid.

Case 1. (D\{0}) ∩ σ(T ) = ∅.
It follows that σ(T ) ⊂ {0} ∪ ∂D. Then Area(σ(T )) = 0, and by Lemma 3.9,

T is a normal operator.
Case 2. (D\{0}) ∩ σ(T ) 6= ∅.
In this case we shall show that σ(T ) = D. For a proof by contradiction,

we assume that D * σ(T ). Note that 0 ∈ σ(T ) and σ(T ) ∩ ∂D 6= ∅. Then
one can deduce that ∂σ(T ) ∩ (D\{0}) 6= ∅. Choose λ ∈ ∂σ(T ) ∩ (D\{0}).
Then, by Lemma 3.10, T ∼=a λ ⊕ C for some operator C, where ∼=a denotes
approximate unitary equivalence. That is, there exist unitary operators Un such
that UnTU

∗
n → λ⊕C. Since partial isometries constitute a norm closed subset

of B(H), it follows that λ⊕C is also a partial isometry. That is, |λ|2 ⊕C∗C is
a projection. This is absurd since 0 < |λ| < 1. This completes the proof. �

4. Weyl’s theorem

For S ∈ B(H), we denote π00(S) := {λ ∈ iso σ(S) : 0 < dim ker(S−λ) <∞}.
Also, by [3, Theorem XI.6.12], we have

σw(S) = σlre(S) ∪ {λ ∈ C \ σlre(S) : ind (λ− S) 6= 0}.

Then Weyl’s theorem holds for S if and only if σ(S)\σw(S) = π00(S).
The main result of this section is the following theorem.

Theorem 4.1. Let T be a nonzero partial isometry and let A be the compres-
sion of T to (kerT )⊥. Then Weyl’s theorem holds for T if and only if either (a)
Weyl’s theorem holds for A, or (b) dim kerT =∞ and [σ(A) \ σw(A)] \ {0} =
π00(A) \ {0}.

Thus, if a contraction A satisfies Weyl’s theorem, then so does R(A). Later
we shall provide an example to show that the converse does not hold (see
Example 4.3).

Still, to give the proof of Theorem 4.1, we first make some preparation.

Lemma 4.2. Let T ∈ B(H) be a partial isometry with {0} ( kerT ( H and

T =

[
A 0
B 0

]
(kerT )⊥

kerT.

Then π00(T ) ∪ {0} = π00(A) ∪ {0} and σw(T ) ∪ {0} = σw(A) ∪ {0}.
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Proof. Let λ ∈ C\{0}. By Lemma 3.3, λ ∈ iso σ(T ) if and only if λ ∈ iso σ(A).
By (2) in the proof of Lemma 3.3, we obtain π00(T ) ∪ {0} = π00(A) ∪ {0}.

Again, using (3) in the proof of Lemma 3.3, ran (λ − T ) is closed if and
only if ran (λ − A) is closed. From the proof of Lemma 3.3, one can see
dim ker(λ−A)∗ = dim ker(λ−T )∗. Then λ−A is Fredholm if and only if λ−T
is Fredholm; in this case, ind (λ − T ) = ind (λ − A). Hence we conclude that
σw(T ) ∪ {0} = σw(A) ∪ {0}. �

Now we are going to give the proof of Theorem 4.1.

Proof of Theorem 4.1. Denote H1 = (kerT )⊥ and H2 = kerT. Then, relative
to the decomposition H = H1 ⊕H2, T can be written as

T =

[
A 0
B 0

]
.

If dimH1 <∞, then T is of finite rank; if H2 = {0}, then T is an isometry.
In both cases the result is clear. So we directly assume that dimH1 =∞ and
H2 6= {0}. Thus neither A nor B is absent.

For convenience, given an operator S, we write S ∈ (W) to denote that
Weyl’s theorem holds for S.

“⇐=”. We first prove that statement (a) implies T ∈ (W). The proof is
divided into three cases.

Case 1. 0 /∈ σ(A).
By [11, Cor. 3.22], T is similar to A⊕ 0.
If dimH2 < ∞, then we immediately have σ(T ) = σ(A) ∪ {0}, σw(T ) =

σw(A) and π00(T ) = π00(A) ∪ {0}. Noting that 0 /∈ σ(A), we obtain 0 /∈
σw(A) ∪ π00(A). Hence

π00(T ) = π00(A) ∪ {0}
=
(
σ(A)\σw(A)

)
∪ {0}

=
(
σ(A) ∪ {0}

)
\σw(A)

= σ(T )\σw(T ).

That is, T ∈ (W).
On the other hand, if dimH2 = ∞, then 0 /∈ π00(T ) and 0 ∈ σw(T ), which

leads to π00(T ) = π00(A) and σw(T ) = σw(A) ∪ {0}. So

π00(T ) = π00(A) = σ(A)\σw(A)

= (σ(A) ∪ {0})\(σw(A) ∪ {0})
= σ(T )\σw(T ).

That is, T ∈ (W).
Case 2. 0 ∈ σ(A) and 0 /∈ σw(A).
Since A ∈ (W), that is, π00(A) = σ(A)\σw(A), it follows that 0 ∈ π00(A).

So 0 ∈ iso σ(T ).
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If dimH2 < ∞, then one has σw(A) = σw(T ) and 0 ∈ π00(T ). By Lemma
4.2, the latter implies π00(T ) = π00(A). Since A ∈ (W) and σ(A) = σ(T ), it
follows immediately that T ∈ (W).

If dimH2 = ∞, then 0 /∈ π00(T ) and 0 ∈ σw(T ). It follows that π00(A) =
π00(T ) ∪ {0} and σw(T ) = σw(A) ∪ {0}. Hence

π00(T ) = π00(A) \ {0} = [σ(A)\σw(A)] \ {0}
= [σ(T )\σw(A)] \ {0}
= σ(T )\σw(T ),

that is, T ∈ (W).
Case 3. 0 ∈ σw(A).
Since A ∈ (W), it follows that 0 /∈ π00(A). We also note that σ(A) = σ(T ).
We first consider the case that dimH2 < ∞. Then σw(T ) = σw(A), which

implies 0 ∈ σw(T ). Note that B is finite-rank and A∗A + B∗B = I, where
I is the identity operator on H1. Thus A is a semi-Fredholm operator. We
claim that 0 /∈ π00(T ). In fact, if not, then 0 ∈ iso σ(T ), which implies that
0 ∈ iso σ(A). By Lemma 3.5, we obtain 0 ∈ π00(A), a contraction. Then, in
view of Lemma 4.2, we obtain

σ(T ) \ σw(T ) = σ(A) \ σw(A) = π00(A) = π00(T ),

that is, T ∈ (W).
On the other hand, when dimH2 =∞, one gets 0 /∈ π00(T ) and 0 ∈ σw(T ).

Using Lemma 4.2 again, we obtain T ∈ (W).
Now we shall prove that statement (b) implies T ∈ (W).
Since dimH2 =∞, it follows that 0 ∈ σw(T ) and 0 /∈ π00(T ).
By Lemma 4.2, we have

σ(T ) \ σw(T ) = [σ(A) \ σw(A)] \ {0}
= π00(A) \ {0} = π00(T ).

Thus T ∈ (W).
“=⇒”. Now we assume that T ∈ (W). We shall prove that either (a) or (b)

holds. The proof is divided into four cases.
Case 1. 0 /∈ σ(A).
By [11, Cor. 3.22], T is similar to A⊕ 0.
If dimH2 < ∞, then we immediately have σ(T ) = σ(A) ∪ {0}, σw(T ) =

σw(A) and π00(T ) = π00(A) ∪ {0}. Since T ∈ (W), we have

π00(A) ∪ {0} = π00(T )

= σ(T )\σw(T )

=
(
σ(A) ∪ {0}

)
\σw(A)

=
(
σ(A)\σw(A)

)
∪ {0}.

Noting that 0 /∈ σ(A), we obtain π00(A) = σ(A)\σw(A). That is, A ∈ (W).
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On the other hand, if dimH2 = ∞, then 0 /∈ π00(T ) and 0 ∈ σw(T ), which
leads to π00(T ) = π00(A) and σw(T ) = σw(A) ∪ {0}. So

π00(A) = π00(T ) = σ(T )\σw(T )

=
(
σ(A) ∪ {0}

)
\
(
σw(A) ∪ {0}

)
= σ(A)\σw(A).

That is, A ∈ (W).
Case 2. 0 ∈ σ(A) and 0 /∈ σw(T ).
Since T ∈ (W), it follows that 0 ∈ π00(T ) and dimH2 = dim kerT < ∞.

Then σw(T ) = σw(A) and 0 /∈ σw(A). On the other hand, it is clear that
σ(T ) = σ(A). Thus 0 ∈ iso σ(A). By Lemma 3.5, we obtain 0 ∈ π00(A). In
view of Lemma 4.2, one can see that σ(A)\σw(A) = π00(A).

Case 3. 0 ∈ π00(A) and 0 ∈ σw(T ).
0 ∈ π00(A) implies that 0 ∈ iso σ(A) = iso σ(T ). Since T ∈ (W), it follows

that σ(T ) \ σw(T ) = π00(T ) and 0 /∈ π00(T ). Hence dimH2 = dim kerT = ∞
and

[σ(T ) \ σw(T )] \ {0} = π00(T ) \ {0}.
By Lemma 4.2, one can see that statement (b) holds.

Case 4. 0 ∈ [σ(A) \ π00(A)] and 0 ∈ σw(T ).
Since T ∈ (W) and 0 ∈ σw(T ), it follows that 0 /∈ π00(T ). In view of Lemma

4.2, we have π00(T ) = π00(A). Note that σ(T ) = σ(A). It suffices to prove that
σw(T ) = σw(A). In view of Lemma 4.2, we need only prove 0 ∈ σw(A).

For a proof by contradiction, we assume that 0 /∈ σw(A). Then ind A = 0
and 0 < dim kerA <∞.

If 0 ∈ ∂σ(A), then, by Lemma 3.4, 0 ∈ iso σ(A). This means that 0 ∈ π00(A),
a contradiction.

If 0 ∈ int σ(A), then there exists δ > 0 such that B(0, δ) ⊂ σ(A) and
ind (A − z) = 0 for z ∈ B(0, δ) \ {0}. Thus B(0, δ) \ {0} ⊂ [σ(A) \ σw(A)].
In view of Lemma 4.2, we deduce that B(0, δ) \ {0} ⊂ [σ(T ) \ σw(T )]. This is
absurd, since T ∈ (W) implies that σ(T ) \ σw(T ) is at most countable. This
completes the proof. �

Example 4.3. The classical Volterra integration operator on L2[0, 1] is defined
by

(V f)(t) =

∫ t

0

f(s)ds, ∀t ∈ [0, 1],

where f ∈ L2[0, 1]. It is well known that σ(V ) = {0}, ‖V ‖ ≤ 1 and dim kerV =
0. Denote A = V ⊕ 0 acting on L2[0, 1]⊕ C. Thus σ(A) = σw(A) = π00(A) =
{0}. Hence Weyl’s theorem does not hold for A. Note that σ(R(A)) =
σw(R(A)) = {0} and π00(R(A)) = ∅. Then R(A) ∈ (W).

Acknowledgements. The authors would like to thank the referee for his
careful reading of the manuscript and for giving several valuable suggestions.



WEAK NORMAL PROPERTIES OF PARTIAL ISOMETRIES 1501

S. Zhu is supported by NSFC (11671167) and LMNS during his visit to Fudan
University.

References

[1] S. Chavan and R. Curto, Weyl’s theorem for pairs of commuting hyponormal operators,

Proc. Amer. Math. Soc. 145 (2017), no. 8, 3369–3375. https://doi.org/10.1090/proc/

13479

[2] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966),

285–288. http://projecteuclid.org/euclid.mmj/1031732778

[3] J. B. Conway, A Course in Functional Analysis, second edition, Graduate Texts in
Mathematics, 96, Springer-Verlag, New York, 1990.

[4] , The Theory of Subnormal Operators, Mathematical Surveys and Monographs,

36, American Mathematical Society, Providence, RI, 1991. https://doi.org/10.1090/
surv/036

[5] R. E. Curto and Y. M. Han, Weyl’s theorem, a-Weyl’s theorem, and local spectral
theory, J. London Math. Soc. (2) 67 (2003), no. 2, 499–509. https://doi.org/10.1112/

S0024610702004027

[6] , Generalized Browder’s and Weyl’s theorems for Banach space operators, J.
Math. Anal. Appl. 336 (2007), no. 2, 1424–1442. https://doi.org/10.1016/j.jmaa.

2007.03.060

[7] S. R. Garcia and W. R. Wogen, Complex symmetric partial isometries, J. Funct. Anal.
257 (2009), no. 4, 1251–1260. https://doi.org/10.1016/j.jfa.2009.04.005

[8] P. R. Halmos, A Hilbert Space Problem Book, second edition, Graduate Texts in Math-

ematics, 19, Springer-Verlag, New York, 1982.
[9] P. R. Halmos and J. E. McLaughlin, Partial isometries, Pacific J. Math. 13 (1963),

585–596. http://projecteuclid.org/euclid.pjm/1103035746

[10] Y. M. Han and W. Y. Lee, Weyl’s theorem holds for algebraically hyponormal opera-
tors, Proc. Amer. Math. Soc. 128 (2000), no. 8, 2291–2296. https://doi.org/10.1090/

S0002-9939-00-05741-5

[11] D. A. Herrero, Approximation of Hilbert Space Operators. Vol. I, Research Notes in

Mathematics, 72, Pitman (Advanced Publishing Program), Boston, MA, 1982.

[12] C. Jiang and Z. Y. Wang, Structure of Hilbert Space Operators, World Scientific Pub-
lishing Co. Pte. Ltd., Hackensack, NJ, 2006.

[13] P. Skoufranis, Numerical ranges of operators, unpublished preprint, http://pskoufra.

info.yorku.ca/files/2016/07/Numerical-Range.pdf
[14] H. Weyl, Uber beschrankte quadratische formen, deren differenz, vollsteig ist, Rend.

Circ. Mat. Palermo 27 (1909), 373–392.

[15] S. Zhu, Approximate unitary equivalence of normaloid type operators, Banach J. Math.
Anal. 9 (2015), no. 3, 173–193. https://doi.org/10.15352/bjma/09-3-13

[16] , Approximation of complex symmetric operators, Math. Ann. 364 (2016), no. 1-
2, 373–399. https://doi.org/10.1007/s00208-015-1221-0

Ting Liu

Institute of Mathematics

Jilin University
Changchun 130012, P. R. China

Email address: tingliu17@mails.jlu.edu.cn

https://doi.org/10.1090/proc/13479
https://doi.org/10.1090/proc/13479
http://projecteuclid.org/euclid.mmj/1031732778
https://doi.org/10.1090/surv/036
https://doi.org/10.1090/surv/036
https://doi.org/10.1112/S0024610702004027
https://doi.org/10.1112/S0024610702004027
https://doi.org/10.1016/j.jmaa.2007.03.060
https://doi.org/10.1016/j.jmaa.2007.03.060
https://doi.org/10.1016/j.jfa.2009.04.005
http://projecteuclid.org/euclid.pjm/1103035746
https://doi.org/10.1090/S0002-9939-00-05741-5
https://doi.org/10.1090/S0002-9939-00-05741-5
https://doi.org/10.15352/bjma/09-3-13
https://doi.org/10.1007/s00208-015-1221-0


1502 T. LIU, Y. MEN, AND S. ZHU

Yanying Men

Institute of Mathematics

Jilin University
Changchun 130012, P. R. China

Email address: menyy16@mails.jlu.edu.cn

Sen Zhu

Department of Mathematics

Jilin University
Changchun 130012, P. R. China

Email address: zhusen@jlu.edu.cn


