• Title/Summary/Keyword: Osteoporosis, Osteoclast Differentiation

Search Result 105, Processing Time 0.024 seconds

Expression of Osteoprotegerin and Osteoclast Differentiation Factor in Human Periodontal Ligament Fibroblast Cells (치주인대 섬유아세포에서 Osteoprotegerin과 Osteoclast Differentiation Factor의 발현)

  • Rew, Seong-Hun;Heo, Soo-Rew;Kim, Hyung-Seop;O, Kwi-Ok
    • Journal of Periodontal and Implant Science
    • /
    • v.32 no.4
    • /
    • pp.721-731
    • /
    • 2002
  • Recently, soluble TNF receptor homolog osteoprotegerin(OPG) and its membrane-bound ligand osteoclast differentiation factor(ODF) were found to regulate osteoclast formation and function, and bone metabolism. It is now well established that ODF acts via RANK expressed on hematopoietic osteoclast precursor cells to facilitate their differentiation to osteoclasts, and OPG prevents the formation of osteoclasts by interfering the binding of ODF and RANK. Expression of OPG and ODF was believed to be closely related to the pathogenesis of bone resorption and destruction from osteoporosis, periodontal diseases, malignant bone tumor, and arthritis. The periodontal ligament fibroblasts (PDLF), located between the tooth and tooth socket, has been thought to play an important role in maintaining bone homeostasis of periodontal tissues. However, the exact mechanism by which bone formation and resorption are regulated by PDLF is not well understood. In this study we have prepared primary cultures of human PDLF from periodontium of malaligned tooth extracted due to orthodontic reason, and determined steady state or inflammatory signal-induced OPG and ODF expression using RT-PCR and western blot analysis. OPG and ODF mRNA and protein were expressed constitutively in the PDLF and these expression were slightly increased by osteotropic cytokine IL-1 ${\beta}$. Lipopolysaccharide-treated PDLF showed decrease in OPG mRNA and protein expression, and increase in ODF mRNA and protein expression. These results indicated that PDLF influence the osteoclastogenesis by OPG and ODF expression in the inflammatory situation as well as physiological condition, and thereby pathogenesis of periodontal alveolar bone destruction.

Inhibitory effect of Chaenomelis Fructus ethanol extract on receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenesis

  • Park, Geun Ha;Gu, Dong Ryun;Lee, Seoung Hoon
    • International Journal of Oral Biology
    • /
    • v.45 no.1
    • /
    • pp.15-24
    • /
    • 2020
  • The fruit of Chaenomeles sinensis (Thouin) Koehne (Chaenomelis Fructus) known as "Mo-Gua" in Korea has been commonly used in traditional medicine to treat inflammatory diseases, such as sore throat. However, its effect on bone metabolism has not been elucidated yet. Here, we examined the effect of Chaenomelis Fructus ethanol extract (CF-E) on receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation and formation. CF-E considerably inhibited osteoclast differentiation and tartrate-resistant acid phosphatase-positive multinuclear cell formation from bone marrow-derived macrophages and osteoclast precursor cells in a dose-dependent manner. In addition, the formation of actin rings and resorption pits were significantly suppressed in CF-E-treated osteoclasts as compared with the findings in non-treated control cells. Consistent with these phenotypic inhibitory results, the expressions of osteoclast differentiation marker genes (Acp5, Atp6v0d2, Oscar, CtsK, and Tm7sf4) and Nfatc1, a pivotal transcription factor for osteoclastogenesis, were markedly decreased by CF-E treatment. The inhibitory effect of CF-E on RANKL-induced osteoclastogenesis was associated with the suppression of NFATc1 expression, not by regulation of mitogen-activated protein kinases and NF-κB activation but by the inactivation of phospholipase C gamma 1 and 2. These results indicate that CF-E has an inhibitory effect on osteoclast differentiation and formation, and they suggest the possibility of CF-E as a traditional therapeutic agent against bone-resorptive diseases, such as osteoporosis, rheumatoid arthritis, and periodontitis.

Effect of Water Extract of Eucommiae cortex In RANKL-induced Osteoclast Differentiation (두충의 물 추출물이 파골세포의 분화에 미치는 영향)

  • Jung, Yeon-Tae;Choi, Yun-Hong;Song, Jeong-Hoon;Lee, Chang-Hoon;Lee, Myeung-Su;Jang, Sung-Jo;Cho, Hae-Joong;Kwak, Han-Bok;Oh, Jae-Min
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.3
    • /
    • pp.613-618
    • /
    • 2009
  • Although the effect of Eucommie umoides oliver in osteoporosis has been studied, direct action of Eucommis ulmoides Oliver on osteoclasts remains unknown. Here we examined whether Eucommiae cortex inhibits osteoclast differentiation and bone resorption, a process known to be involved in bone diseases such as osteoporosis. Water extract from Eucommiae cortex (WE-EC) inhibited differentiation of bone marrow macrophages (BMMs) into osteoclasts without causing cytotoxicity. WE-EC suppressed the phosphorylation of p38, ERK, and JNK in BMMs treated with RANKL. WE EC specifically suppressed the mRNA expression of NFATc1 induced by RANKL. However, WE-EC inhibited stability of c-Fos protein induced by RANKL. Furthermore, WE-EC inhibited osteoclast survival induced by RANKL and in turn suppressed bone resorption. Taken together, our results suggest that WE-EC may be better agents for therapeutic use in bone diseases.

Inhibitory Effects of Wogonin Mixed with Hydrogel on Osteoclast Differentiation (우고닌-하이드로젤 지지체의 파골세포 분화 억제 효과)

  • Yang, Na-Rae;Lee, Jin-Moo;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.24 no.4
    • /
    • pp.1-9
    • /
    • 2011
  • Purpose: Wogonin is an active component isolated from scutellariae radix. This study was conducted to evaluate the inhibitory effect of wogonin mixed with hydrogel on osteoclast differentiation. Methods: It was performed to estimate cytotoxicity of Wogonin alginate hydrogel disk(WHD) in BMMs stimulated with RANKL, M-CSF. ROS synthesis and actin ring formation were analysed to observe the effect of WHD. Results: WHD has no cytotoxicity at the concentration of 0.1 ${\mu}g/ml$ or lower. 0.1 ${\mu}g/ml$, 1 ${\mu}g/ml$ WHD restrained the synthesis of ROS and 0.1 ${\mu}g/ml$, 1 ${\mu}g/ml$ WHD restrained the formation of actin ring. Conclusions: WHD has the inhibitory effect of osteoclast differentiation and bone resorption. Further studies are needed to treat osteoporosis by herbal medicine.

Effect of Water Extract of Cynanchi Wilfordii Radix in RANKL-induced Osteoclast Differentiation (백하수오(白何首烏) 물 추출물의 파골세포 분화에 미치는 영향)

  • Ahn, Yong-Hwan;Oh, Jae-Min;Lee, Myeung-Su;Jung, Jong-Hyuk;Chae, Soo-Uk;Moon, Seo-Young;Jeon, Byung-Hoon;Choi, Min-Kyu
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.160-165
    • /
    • 2012
  • Osteoporotic fracture became a serious social problem, which related with mortality and morbidity in old age population. Osteoclast which is responsible for bone resorption is originated from hematopoietic cell line and plays a key role osteoporotic bone loss. Cynanchum wilfordii (Asclepiadaceae) roots have been used in Korean folk medicine for the treatment of diabetes mellitus and aging progression. Also, recent studies have shown that the extract and fractions of Cynanchi Wilfordii Radix have various pharmacological actions including scavenging free radicals, enhancing immunity, reducing high serum cholesterol, and anti-tumor activity. However, the effect of extract of Cynanchi Wilfordii Radix in osteoclast differentiation had not been reported. Thus, we evaluated the effect of Cynanchi Wilfordii Radix on receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation. Through our study, we found that Cynanchi Wilfordii Radix significantly inhibited osteoclast differentiation induced by RANKL. Cynanchi Wilfordii Radix suppressed the activation of p38 pathway and $NF{\kappa}B$ in bone marrow macrophages (BMMs) treated with RANKL. Also, Cynanchi Wilfordii Radix significantly inhibited the mRNA expression of c-Fos, tartrate-resistant acid phosphatase (TRAP), osteoclast-associated receptor (OSCAR), nuclear factor of activated T cells (NFAT)c1 and cathepsin K in BMMs treated with RANKL. Particularly, Cynanchi Wilfordii Radix inhibited the protein expression of c-fos and NFATc1. Taken together, our results demonstrated that Cynanchi Wilfordii Radix may be useful treatment option of bone-related disease such as osteoporosis leads to fracture of bone and rheumatoid arthritis.

Inhibitory Effects of Rhizoma Arisaematis on Osteoclast Differentiation and Bone Resorption (파골세포의 분화와 뼈 흡수에 천남성의 억제 효과)

  • Lee, Myeung-Su;Lee, Chang-Hoon;Park, Kie-In;Kim, Ha-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.65-70
    • /
    • 2011
  • Osteoclasts play a critical role in bone-related diseases such as osteoporosis and rheumatoid arthritis by resorbing the bone. Recently, natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Here, we examined the effects of rhizoma arisaematis on ostoclast differentiation and bone resorption. We showed that rhizoma arisaematis significantly suppressed receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in a dose dependent manner but have little or no effect on the cytotoxicity of BMMs and RAW264.7 cells. We found that rhizoma arisaematis iarrow-ed the RANKL-induced c-Fos and nuclear factor of activated T cells (NFAT)c1, which is a master regulator of osteoclast differentiation. Furthermore, rhizoma arisaematis suppressed the mRNA expression of tartrate resistant-acid phosphatase and cathepsin K iaduced by RANKL in BMMs. in y chanistic studies, rhizoma arisaematis considerably iarrow-ed I-${\kappa}B$ degradation, which is a negative regulator of NF-${\kappa}B$, but iaduced the phosphderlation of p-38, ERK, and JNK.MMlso, we found that rhizoma arisaematis significantly iarrow-ed osteoclastic bone resorption. Taken tarether, our results suggest that rhizoma arisaematis suppresses osteoclast differentiation through down-regulatd the mRANKL-induced c-Fos and NFATc1 expression and iarrow-s bone resorption.

Inhibitory Effects of Achyranthis Radix Extract Mixed with Hydrogel on Osteoclast Differentiation (하이드로젤에 탑재한 우슬(牛膝)추출물의 효과적인 파골세포 분화 억제 작용)

  • Choi, Jin-Young;Lee, Chang-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub;Lee, Jin-Moo
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.25 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • Purpose: This study was conducted to evaluate the inhibitory effect of Achyranthis Radix extract(ARE) loaded hydrogel on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of ARE, Achyranthis Radix-alginate hydrogel disk(ARHD) in bone marrow macrophages stimulated(BMMs) with human receptor activator of nuclear factor-${\kappa}B$ ligand(RANKL), human macrophage-colony stimulating factor(M-CSF). Tartrate resistant acid phosphatase staining and RT-PCR were performed to know the inhibitory effect on osteoclast differentiation. Reactive oxygen species and actin ring formation were analysed to observe the effect of ARHD. Results: ARE has no cytotoxicity at the concentration of 0.1 $mg/m{\ell}$ or lower. ARE decreased the number of TRAP positive cells in RANKL, M-CSF stimulated BMMs and the gene expression. ARHD has no cytotoxicity at the concentration of 10 ${\mu}g/m{\ell}$ (24, 48hours), 50 ${\mu}g/m{\ell}$ (24 hours). ARHD restrained the synthesis of reactive oxygen species and the formation of actin ring. Conclusions: Achyranthis Radix has the inhibitory effect of osteoclast differentiation and bone resorption. Further studies are needed to treat osteoporosis by Achyranthis Radix.

Osteoclast Differentiation of Polygoni Cuspidati Radix Extracts Effects and Mechanism of Inhibition Studies (호장근(虎杖根)의 파골세포 분화 억제 효과와 기전 연구)

  • Jang, Hee-Jae;Hwang, Deok-Sang;Lee, Jin-Moo;Lee, Chang-Hoon;Lee, Kyung-Sub;Jang, Jun-Bok
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • Objectives: This study was conducted to evaluate the inhibitory effect of polygoni cuspidati radix (PCR) extract on osteoclast differentiation. Methods: MTT-assay was performed to estimate cytotoxicity of PCR extract in BMMs stimulated with RANKL. Tartrate resistant acid phosphatase (TRAP) staining, TRAP activity and RT-PCR were performed to know the inhibitory effect on osteoclast differentiation. actin ring formation were analysed to observe the effect of PCR extract. Results: PCR decreased the number of TRAP positive cells and TRAP activities in BMMs stimulated with RANKL and M-CSF. PCR restrained the formation of actin ring. PCR down regulated the induction of NFATc1, c-Fos, TRAP and OSCAR by RANKL. PCR inhibited NF-${\kappa}B$ activity by inducing degradation of $I{\kappa}B{\alpha}$. Conclusions: We suggest that PCR Extracts can be an effective therapeutic agent on osteoclast differentiation caused by diseases such as osteoporosis.

Effect of Lonicerae Japonicae Flos on Bone Density in Ovariectomized Rat Model of Osteoporosis (난소 적출 흰쥐 골다공증 모델에서 금은화(金銀花)가 골밀도 증가에 미치는 효과)

  • Lee, SungYub;Kim, Minsun;Hong, SooYeon;Kim, Jae-Hyun;Kim, Hongsik;Lee, Chungho;Jung, Hyuk-Sang;Sohn, Youngjoo
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.81-91
    • /
    • 2021
  • Objectives : Osteoporosis is a systemic skeletal disease that decreases bone density and increases the risk of fractures. Bisphosphonates and SERMs are mainly used to treat osteoporosis, but, long-term use increases the risk of side effects such as jaw bone necrosis and breast cancer. Therefore, it is necessary to develop a therapeutic agent for a natural product with few side effects. Water extract of Lonicerae Japonicae Flos (wLF) was mainly found to have anti-cancer and anti-inflammatory effects. However, the effect of wLF on osteoporosis has not been elucidated. Therefore, this experiment investigated the effect of wLF on osteoclasts, osteoblasts and osteoporosis models. Methods : In order to study the effect of wLF on osteoporosis, the OVX-induced rat model was used for in vivo study. After 8 weeks, we measured body weight, uterine weight, liver weight, femur weight, bone density, trabecular area and tibia ash weight. To determine the effect of wLF on osteoclast differentiation, we measured the number of TRAP-positive cells and TRAP activity. To examine the effect of wLF on the expression of osteoblast-related genes, we measured the mRNA expression of alkaline phosphatase (ALP, Alpl) and osteocalcin (OCN, Bglap2). Results : In vivo experiment, wLF inhibited the reduction of femur weight, trabecular area, bone density and tibia ash weight. In vitro experiment, wLF had no significant effect on osteoclast differentiation. However, wLF increased the mRNA expression of Alpl and Bglap2 in MC3T3-E1 cell. Conclusions : This result suggested that wLF may be used for the treatment and prevention of postmenopausal osteoporosis.

Inhibitory Effect on RANKL-Induced Osteoclast Differentiation by Water Extract of Zizyphus Jujuba Mill (대추 물 추출물이 RANKL에 의해 유도되는 파골세포 분화에 미치는 영향)

  • Yoon, Kang Hugh;Baek, Jong Min;Kim, Ju Young;Kwak, Seong Cheoul;Cheon, Yoon Hee;Jeon, Byung Hoon;Lee, Chang Hoon;Choi, Min Kyu;Oh, Jaemin;Lee, Myeung Su;Kim, Jeong Joong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.29-34
    • /
    • 2014
  • Bone homeostasis is maintained by balance between bone resorbing-osteoclasts and bone forming-osteoblasts. Excessive osteoclastic bone resorption plays a critical role in bone destruction in pathological bone diseases such as osteoporosis, rheumatoid arthritis, and periodontal disease. Many compounds derived from natural products have pharmacological applications and have therapeutic value for treating or preventing several bone diseases characterized by excessive bone resorption. To discover new compounds that can act as anti-resorptive agents, we screened for natural compounds that regulate osteclast differentiation, and found that water extract of Ziziphus Jujuba Mill (WEZJ) has inhibitory effects on osteoclast differentiation. In this study, WEZJ clearly inhibits the osteoclast differentiation in the presence of receptor activator of nuclear factor kB (RANKL), macrophage colony-stimulating factor (M-CSF) without cytoxicity by blocking activation of nuclear factor of activated T cells (NFAT)c1, and c-Fos. In signaling pathway, the phosphorylation of Akt, p38, c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinases (ERK) and the expression of osteoclast-associated receptor (OSCAR), tartrate-resistant acid phosphates (TRAP), Integrin av, Integrin b3, Cathepsin K are suppressed, too. These result suggest that WEZJ may have therapeutic value for treating or preventing several bone diseases characterized by excessive bone destruction.