Browse > Article

Inhibitory Effects of Rhizoma Arisaematis on Osteoclast Differentiation and Bone Resorption  

Lee, Myeung-Su (Department of Internal Medicine, Division of Rheumatology, University of Wonkwang College of Medicine)
Lee, Chang-Hoon (Department of Internal Medicine, Division of Rheumatology, University of Wonkwang College of Medicine)
Park, Kie-In (Division of Biological Science, School of Natural Science, Chonbuk National University)
Kim, Ha-Young (Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Wonkwang College of Medicine, Sanbon Medical Center)
Publication Information
Journal of Physiology & Pathology in Korean Medicine / v.25, no.1, 2011 , pp. 65-70 More about this Journal
Abstract
Osteoclasts play a critical role in bone-related diseases such as osteoporosis and rheumatoid arthritis by resorbing the bone. Recently, natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Here, we examined the effects of rhizoma arisaematis on ostoclast differentiation and bone resorption. We showed that rhizoma arisaematis significantly suppressed receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in a dose dependent manner but have little or no effect on the cytotoxicity of BMMs and RAW264.7 cells. We found that rhizoma arisaematis iarrow-ed the RANKL-induced c-Fos and nuclear factor of activated T cells (NFAT)c1, which is a master regulator of osteoclast differentiation. Furthermore, rhizoma arisaematis suppressed the mRNA expression of tartrate resistant-acid phosphatase and cathepsin K iaduced by RANKL in BMMs. in y chanistic studies, rhizoma arisaematis considerably iarrow-ed I-${\kappa}B$ degradation, which is a negative regulator of NF-${\kappa}B$, but iaduced the phosphderlation of p-38, ERK, and JNK.MMlso, we found that rhizoma arisaematis significantly iarrow-ed osteoclastic bone resorption. Taken tarether, our results suggest that rhizoma arisaematis suppresses osteoclast differentiation through down-regulatd the mRANKL-induced c-Fos and NFATc1 expression and iarrow-s bone resorption.
Keywords
Rhizoma Arisaematis; Osteoclast; RANKL; NFATc1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kim, K., Lee, S.H., Kim H.J., Choi, Y., Kim, N. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22: 176-185, 2008.
2 Murai, H., Hiragami, F., Kawamura, K., Motoda, H., Koike, Y., Inoue, S., Kumagishi, K., Ohtsuka, A., Kano, Y. Differential response of heat-shock-induced p38 MAPK and JNK activity in PC12 mutant and PC12 parental cells for differentiation and apoptosis. Acta. Med. Okayama. 64: 55-62, 2010.
3 Gupta, M., Gupta, S.K., Hoffman, B., Liebermann, D.A. Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. J. Biol. Chem. 281: 17552-17558, 2006.   DOI
4 Watts, B.A. 3rd, Di., Mari. J.F., Davis, R.J., Good, D.W. Hypertonicity activates MAP kinases and inhibits HCO-3 absorption via distinct pathways in thick ascending limb. Am. J. Physiol. 275: F478-486, 1998.
5 Dent, P., Yacoub, A., Fisher, P.B., Hagan, M.P., Grant, S. MAPK pathways in radiation responses. Oncogene 22: 5885-5896, 2003.   DOI   ScienceOn
6 Qin, M.Z. Comparative studies of the histology of rhizoma Arisaematis and Pinelliae. Zhong. Yao. Tong. Bao. 13: 6-8, 1988.
7 Kim, J.J., Kim, D.J., Lee, B.K., Kim, K.J., Lee, M.S., Lee, J.H., Kim, H.S., Lee, C.H., Byun, S.J., Jang, S.J., Song, J.H., Oh, J.M., Lee, J.S., Kim, K.M., Chun, C.H. Effects of Curcumin on osteoclasts. Korean J. Oriental Physiology & Pathology 22: 1566-1571, 2008.
8 Du, S.S., Lin, H.Y., Zhou, Y.X., Wei, L.X. Contents of total flavonoids in Rhizoma Arisaematis. Zhongguo. Zhong. Yao. Za. Zhi. 26: 411-412, 2001.
9 Macian, F., Garcia-Rodríguez, C., Rao, A. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J. 19: 4783-4795, 2000.   DOI
10 Takayanagi, H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83: 170-179, 2005.   DOI   ScienceOn
11 Matsuo, K., Galson, D.L., Zhao, C., Peng, L., Laplace, C., Wang, K.Z., Bachler, M.A., Amano, H., Aburatani, H., Ishikawa, H., Wagner, E.F. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279: 26475-26480, 2004.   DOI
12 Ballabriga, A. Morphological and physiological changes during growth: an update. Eur. J. Clin. Nutr. 54 Suppl 1: S1-6, 2000.
13 Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3: 889-901, 2002.   DOI   ScienceOn
14 Khosla, S., Burr, D., Cauley, J., Dempster, D.W., Ebeling, P.R. Felsenberg, D., Gagel, R.F., Gilsanz, V., Guise, T., Koka, S., McCauley, L.K., McGowan, J., McKee, M.D., Mohla, S., Pendrys, D.G., Raisz, L.G., Ruggiero, S.L., Shafer, D.M., Shum, L., Silverman, S.L., Van Poznak, C.H., Watts, N., Woo, S.B., Shane, E. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 22: 1479-1491, 2007.   DOI   ScienceOn
15 Takayanagi, H. The role of NFAT in osteoclast formation. Ann. N. Y. Acad. Sci. 1116: 227-237, 2007.   DOI   ScienceOn
16 Kim, K., Kim, J.H., Lee, J., Jin, H.M., Lee, S.H., Fisher, D.E., Kook, H., Kim, K.K., Choi, Y., Kim, N. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J. Biol. Chem. 280: 35209-35216, 2005.   DOI
17 Mundy, G.R. Osteoporosis and inflammation. Nutr. Rev. 65: S147-151, 2007.   DOI   ScienceOn
18 Boyle, W.J., Simonet W.S., Lacey D.L. Osteoclast differentiation and activation. Nature, 423: 337-342, 2003.   DOI   ScienceOn
19 Lee, Z.H., Kim, H.H. Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem. Biophys. Res. Commun. 305: 211-214, 2003.   DOI   ScienceOn
20 Asagiri, M, Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone 40: 251-264, 2007.   DOI   ScienceOn
21 Seeman, E. Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy?. Bone. 41: 308-317, 2007.   DOI   ScienceOn
22 Kim, Y., Sato, K., Asagiri, M., Morita, I., Soma, K., Takayanagi, H. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J. Biol. Chem. 280: 32905-32913, 2005.   DOI
23 Clowes, J.A., Eghbali-Fatourechi, G.Z., McCready, L., Oursler, M.J., Khosla, S., Riggs, B.L.Estrogen action on bone marrow osteoclast lineage cells of postmenopausal women in vivo. Osteoporos. Int. 20: 761-769, 2009.   DOI   ScienceOn
24 Melton, J.J. 3rd. Who has osteoporosis? A conflict between clinical and public health perspectives. J. Bone Miner. Res. 15: 2309-2314, 2000   DOI   ScienceOn
25 Becker, D.J., Kilgore, M.L., Morrisey, M.A. The societal burden of osteoporosis. Curr. Rheumatol. Rep. 12: 186-191, 2010.   DOI   ScienceOn
26 Rodan, G.A., Martin, T.J. Therapeutic approaches to bone diseases. Science 289: 1508-1514, 2000.   DOI