DOI QR코드

DOI QR Code

Inhibitory effect of Chaenomelis Fructus ethanol extract on receptor activator of nuclear factor-kappa B ligand-mediated osteoclastogenesis

  • Park, Geun Ha (Department of Oral Microbiology and Immunology, Wonkwang University College of Dentistry) ;
  • Gu, Dong Ryun (Department of Oral Microbiology and Immunology, Wonkwang University College of Dentistry) ;
  • Lee, Seoung Hoon (Department of Oral Microbiology and Immunology, Wonkwang University College of Dentistry)
  • Received : 2020.02.13
  • Accepted : 2020.03.03
  • Published : 2020.03.30

Abstract

The fruit of Chaenomeles sinensis (Thouin) Koehne (Chaenomelis Fructus) known as "Mo-Gua" in Korea has been commonly used in traditional medicine to treat inflammatory diseases, such as sore throat. However, its effect on bone metabolism has not been elucidated yet. Here, we examined the effect of Chaenomelis Fructus ethanol extract (CF-E) on receptor activator of nuclear factor (NF)-κB ligand (RANKL)-mediated osteoclast differentiation and formation. CF-E considerably inhibited osteoclast differentiation and tartrate-resistant acid phosphatase-positive multinuclear cell formation from bone marrow-derived macrophages and osteoclast precursor cells in a dose-dependent manner. In addition, the formation of actin rings and resorption pits were significantly suppressed in CF-E-treated osteoclasts as compared with the findings in non-treated control cells. Consistent with these phenotypic inhibitory results, the expressions of osteoclast differentiation marker genes (Acp5, Atp6v0d2, Oscar, CtsK, and Tm7sf4) and Nfatc1, a pivotal transcription factor for osteoclastogenesis, were markedly decreased by CF-E treatment. The inhibitory effect of CF-E on RANKL-induced osteoclastogenesis was associated with the suppression of NFATc1 expression, not by regulation of mitogen-activated protein kinases and NF-κB activation but by the inactivation of phospholipase C gamma 1 and 2. These results indicate that CF-E has an inhibitory effect on osteoclast differentiation and formation, and they suggest the possibility of CF-E as a traditional therapeutic agent against bone-resorptive diseases, such as osteoporosis, rheumatoid arthritis, and periodontitis.

Keywords

References

  1. Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. Osteoimmunology: interplay between the immune system and bone metabolism. Annu Rev Immunol 2006;24:33-63. doi: 10.1146/annurev.immunol.24.021605.090646.
  2. Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature 2003;423:337-42. doi: 0.1038/nature01658. https://doi.org/10.1038/nature01658
  3. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol 2014;5:511. doi: 10.3389/fimmu.2014.00511.
  4. Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, Xing L, Boyce BF. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J Biol Chem 2007;282:18245-53. doi: 10.1074/jbc.M610701200.
  5. Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH, Kim HH. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 2002;30:71-7. doi: 10.1016/s8756-3282(01)00657-3.
  6. Srivastava S, Toraldo G, Weitzmann MN, Cenci S, Ross FP, Pacifici R. Estrogen decreases osteoclast formation by downregulating receptor activator of NF-kappa B ligand (RANKL)- induced JNK activation. J Biol Chem 2001;276:8836-40. doi: 10.1074/jbc.M010764200.
  7. Mocsai A, Humphrey MB, Van Ziffle JA, Hu, Y, Burghardt A, Spusta SC, Majumdar S, Lanier LL, Lowell CA, Nakamura MC. The immunomodulatory adapter proteins DAP12 and Fc receptor gamma-chain (FcRgamma) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc Natl Acad Sci U S A 2004;101:6158-63. doi: 10.1073/pnas.0401602101.
  8. Koga T, Inui M, Inoue K, Kim S, Suematsu A, Kobayashi E, Iwata T, Ohnishi H, Matozaki T, Kodama T, Taniguchi T, Takayanagi H, Takai T. Costimulatory signals mediated by the ITAM motif cooperate with RANKL for bone homeostasis. Nature 2004;428:758-63. doi: 10.1038/nature02444.
  9. Lee SH, Kim T, Jeong D, Kim N, Choi Y. The tec family tyrosine kinase Btk regulates RANKL-induced osteoclast maturation. J Biol Chem 2008;283:11526-34. doi: 10.1074/jbc.M708935200.
  10. Mao D, Epple H, Uthgenannt B, Novack DV, Faccio R. PLCgamma2 regulates osteoclastogenesis via its interaction with ITAM proteins and GAB2. J Clin Invest 2006;116:2869-79. doi: 10.1172/JCI28775.
  11. Takayanagi H. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007;7:292-304. doi: 10.1038/nri2062.
  12. Negishi-Koga T, Takayanagi H. Ca2+-NFATc1 signaling is an essential axis of osteoclast differentiation. Immunol Rev 2009;231:241-56. doi: 10.1111/j.1600-065X.2009.00821.x.
  13. Kim H, Kim T, Jeong BC, Cho IT, Han D, Takegahara N, Negishi- Koga T, Takayanagi H, Lee JH, Sul JY, Prasad V, Lee SH, Choi Y. Tmem64 modulates calcium signaling during RANKLmediated osteoclast differentiation. Cell Metab 2013;17:249-60. doi: 10.1016/j.cmet.2013.01.002.
  14. Kim JH, Kim N. Regulation of NFATc1 in osteoclast differentiation. J Bone Metab 2014;21:233-41. doi: 10.11005/jbm.2014.21.4.233.
  15. Oh KH, Soshnikova V, Markus J, Kim YJ, Lee SC, Singh P, Castro-Aceituno V, Ahn S, Kim DH, Shim YJ, Kim YJ, Yang DC. Biosynthesized gold and silver nanoparticles by aqueous fruit extract of Chaenomeles sinensis and screening of their biomedical activities. Artif Cells Nanomed Biotechnol 2018;46:599-606. doi: 10.1080/21691401.2017.1332636.
  16. Lee MH, Son YK, Han YN. Tissue factor inhibitory flavonoids from the fruits of Chaenomeles sinensis. Arch Pharm Res 2002;25:842-50. doi: 10.1007/bf02977002.
  17. Kim CS, Kwon OW, Kim SY, Choi SU, Kim KH, Lee KR. Five new oxylipins from Chaenomeles sinensis. Lipids 2014;49:1151-9. doi: 10.1007/s11745-014-3953-0.
  18. Lee MH, Han YN. A new in vitro tissue factor inhibitory triterpene from the fruits of Chaenomeles sinensis. Planta Med 2003;69:327-31. doi: 10.1055/s-2003-38884.
  19. Du H, Wu J, Li H, Zhong PX, Xu YJ, Li CH, Ji KX, Wang LS. Polyphenols and triterpenes from Chaenomeles fruits: chemical analysis and antioxidant activities assessment. Food Chem 2013;141:4260-8. doi: 10.1016/j.foodchem.2013.06.109.
  20. Sancheti S, Sancheti S, Bafna M, Seo SY. Antihyperglycemic, antihyperlipidemic, and antioxidant effects of Chaenomeles sinensis fruit extract in streptozotocin-induced diabetic rats. Eur Food Res Technol 2010;231:415-21. doi: 10.1007/s00217-010-1291-x.
  21. Sawai-Kuroda R, Kikuchi S, Shimizu YK, Sasaki Y, Kuroda K, Tanaka T, Yamamoto T, Sakurai K, Shimizu K. A polyphenol-rich extract from Chaenomeles sinensis (Chinese quince) inhibits influenza A virus infection by preventing primary transcription in vitro. J Ethnopharmacol 2013;146:866-72. doi: 10.1016/j.jep.2013.02.020.
  22. Miao J, Zhao C, Li X, Chen X, Mao X, Huang H, Wang T, Gao W. Chemical composition and bioactivities of two common Chaenomeles fruits in China: Chaenomeles speciosa and Chaenomeles sinensis. J Food Sci 2016;81:H2049-58. doi: 10.1111/1750-3841.13377.
  23. Zhang L, Cheng YX, Liu AL, Wang HD, Wang YL, Du GH. Antioxidant, anti-inflammatory and anti-influenza properties of components from Chaenomeles speciosa. Molecules 2010;15:8507-17. doi: 10.3390/molecules15118507.
  24. Zhu Q, Liao C, Liu Y, Wang P, Guo W, He M, Huang Z. Ethanolic extract and water-soluble polysaccharide from Chaenomeles speciosa fruit modulate lipopolysaccharideinduced nitric oxide production in RAW264.7 macrophage cells. J Ethnopharmacol 2012;144:441-7. doi: 10.1016/j.jep.2012.09.042.
  25. Park KH, Gu DR, Jin SH, Yoon CS, Ko W, Kim YC, Lee SH. Pueraria lobate inhibits RANKL-mediated osteoclastogenesis via downregulation of CREB/$PGC1{\beta}$/c-Fos/NFATc1 signaling. Am J Chin Med 2017;45:1725-44. doi: 10.1142/S0192415X17500938.
  26. Jia M, Nie Y, Cao DP, Xue YY, Wang JS, Zhao L, Rahman K, Zhang QY, Qin LP. Potential antiosteoporotic agents from plants: a comprehensive review. Evid Based Complement Alternat Med 2012;2012:364604. doi: 10.1155/2012/364604.
  27. Lee J, Kim HH. Methanol extract of Croton pycnanthus Benth. inhibits osteoclast differentiation by suppressing the MAPK and NF-${\kappa}B$ signaling pathways. J Bone Metab 2014;21:269-75. doi: 10.11005/jbm.2014.21.4.269.
  28. Kim JM, Lee JH, Lee GS, Noh EM, Song HK, Gu DR, Kim SC, Lee SH, Kwon KB, Lee YR. Sophorae Flos extract inhibits RANKL-induced osteoclast differentiation by suppressing the NF-${\kappa}B$/NFATc1 pathway in mouse bone marrow cells. BMC Complement Altern Med 2017;17:164. doi: 10.1186/s12906-016-1550-x.
  29. Park SY, Yang EJ, Park EJ, Shin BS, Na DH, Song KS. Quantitative analysis of ursolic acid and euscaphic acid in Chaenomelis fructus by HPLC-Evaporative light scattering detection. Bull Korean Chem Soc 2014;35:2210-2. doi: 10.5012/bkcs.2014.35.7.2210.
  30. Lee SU, Park SJ, Kwak HB, Oh J, Min YK, Kim SH. Anabolic activity of ursolic acid in bone: stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo. Pharmacol Res 2008;58:290-6. doi: 10.1016/j.phrs.2008.08.008.
  31. Jiang C, Xiao F, Gu X, Zhai Z, Liu X, Wang W, Tang T, Wang Y, Zhu Z, Dai K, Qin A, Wang J. Inhibitory effects of ursolic acid on osteoclastogenesis and titanium particle-induced osteolysis are mediated primarily via suppression of NF-${\kappa}$B signaling. Biochimie 2015;111:107-18. doi: 10.1016/j.biochi.2015.02.002.
  32. Kim JY, Cheon YH, Oh HM, Rho MC, Erkhembaatar M, Kim MS, Lee CH, Kim JJ, Choi MK, Yoon KH, Lee MS, Oh J. Oleanolic acid acetate inhibits osteoclast differentiation by downregulating $PLC{\gamma}2$-Ca(2+)-NFATc1 signaling, and suppresses bone loss in mice. Bone 2014;60:104-11. doi: 10.1016/j.bone.2013.12.013.
  33. Wattel A, Kamel S, Prouillet C, Petit JP, Lorget F, Offord E, Brazier M. Flavonoid quercetin decreases osteoclastic differentiation induced by RANKL via a mechanism involving NF kappa B and AP-1. J Cell Biochem 2004;92:285-95. doi:10.1002/jcb.20071.
  34. Lee JW, Ahn JY, Hasegawa S, Cha BY, Yonezawa T, Nagai K, Seo HJ, Jeon WB, Woo JT. Inhibitory effect of luteolin on osteoclast differentiation and function. Cytotechnology 2009;61:125-34. doi: 10.1007/s10616-010-9253-5.
  35. Lin RW, Chen CH, Wang YH, Ho ML, Hung SH, Chen IS, Wang GJ. (-)-Epigallocatechin gallate inhibition of osteoclastic differentiation via NF-kappaB. Biochem Biophys Res Commun 2009;379:1033-7. doi: 10.1016/j.bbrc.2009.01.007.