Effect of Water Extract of Eucommiae cortex In RANKL-induced Osteoclast Differentiation

두충의 물 추출물이 파골세포의 분화에 미치는 영향

  • Jung, Yeon-Tae (Department of Anatomy, School of Medicine, Wonkwang University) ;
  • Choi, Yun-Hong (Department of Anatomy, School of Medicine, Wonkwang University) ;
  • Song, Jeong-Hoon (Department of Plastic Surgery, School of Medicine, Wonkwang University) ;
  • Lee, Chang-Hoon (Department of Rheumatology, School of Medicine, Wonkwang University) ;
  • Lee, Myeung-Su (Department of Rheumatology, School of Medicine, Wonkwang University) ;
  • Jang, Sung-Jo (Department of Neurosurgery, School of Medicine, Wonkwang University) ;
  • Cho, Hae-Joong (Department of Obstetrics and Gynecology, School of Medicine, Wonkwang University) ;
  • Kwak, Han-Bok (Department of Anatomy, School of Medicine, Wonkwang University) ;
  • Oh, Jae-Min (Department of Anatomy, School of Medicine, Wonkwang University)
  • 정연태 (원광대학교 의과대학 해부학교실) ;
  • 최윤홍 (원광대학교 의과대학 해부학교실) ;
  • 송정훈 (원광대학교 의과대학 성형외과학교실) ;
  • 이창훈 (원광대학교 의과대학 류마티스내과학교실) ;
  • 이명수 (원광대학교 의과대학 류마티스내과학교실) ;
  • 장성조 (원광대학교 의과대학 신경외과학교실) ;
  • 조해중 (원광대학교 의과대학 산부인과학교실) ;
  • 곽한복 (원광대학교 의과대학 해부학교실) ;
  • 오재민 (원광대학교 의과대학 해부학교실)
  • Published : 2009.06.25

Abstract

Although the effect of Eucommie umoides oliver in osteoporosis has been studied, direct action of Eucommis ulmoides Oliver on osteoclasts remains unknown. Here we examined whether Eucommiae cortex inhibits osteoclast differentiation and bone resorption, a process known to be involved in bone diseases such as osteoporosis. Water extract from Eucommiae cortex (WE-EC) inhibited differentiation of bone marrow macrophages (BMMs) into osteoclasts without causing cytotoxicity. WE-EC suppressed the phosphorylation of p38, ERK, and JNK in BMMs treated with RANKL. WE EC specifically suppressed the mRNA expression of NFATc1 induced by RANKL. However, WE-EC inhibited stability of c-Fos protein induced by RANKL. Furthermore, WE-EC inhibited osteoclast survival induced by RANKL and in turn suppressed bone resorption. Taken together, our results suggest that WE-EC may be better agents for therapeutic use in bone diseases.

Keywords

References

  1. Boyle, W.J., Simonet, W.S., Lacey, D.L. Osteoclast differentiation and activation. Nature. 423: 337-342, 2003 https://doi.org/10.1038/nature01658
  2. Teitelbaum, S.L., Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4: 638-649, 2003 https://doi.org/10.1038/nrg1122
  3. Takayanagi, H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83: 170-179, 2005 https://doi.org/10.1007/s00109-004-0612-6
  4. Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga T., Higashio, K., Udagawa, N., Takahashi, N., Suda, T. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl. Acad. Sci. USA. 95: 3597-3602, 1998
  5. Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y.X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J., Boyle, W.J. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 93: 165-176, 1998 https://doi.org/10.1016/S0092-8674(00)81569-X
  6. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., Martin, T.J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20: 345-357, 1999 https://doi.org/10.1210/er.20.3.345
  7. Rao, A., Luo, C., Hogan, P.G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15: 707-747, 1997 https://doi.org/10.1146/annurev.immunol.15.1.707
  8. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3: 889-901, 2002 https://doi.org/10.1016/S1534-5807(02)00369-6
  9. Takayanagi, H. shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7: 292-304, 2007 https://doi.org/10.1038/nri2062
  10. Hayman, A.R., Jones, S.J., Boyde, A., Foster, D., Colledge, W.H., Carlton, M.B., Evans, M.J., Cox, T.M. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development. 122: 3151-3162, 1996
  11. Chung, M.H. and Park, C.W. studies on the development of antihypertensive agents from Korean crude drug I, II, III. Kor. J. Pharmacog, 6: 29, 1975
  12. Ko, Y.O., Sung, H.G. A study on the cutting of Eucommia ulmoides oliv, Kor. J. Pharmcog, 7: 59, 1976
  13. Shi, O., Ravikumar, P., Hung, F., Buckner, C., Whitlock, H. Isolation and synthesis of Pinoresinol diglucoside, a major antihypertensive principle of Tu-chong (Eucommia ulnosides Oliver). J. AM. Chem. Soc, 98: 5412-5413, 1976 https://doi.org/10.1021/ja00433a070
  14. Yanmei, L., Takahiro, S., Koichi, M., Katwuya, K., Qing-ming, C. and Shushichi, T. The Promoting effect of geniposidc acid and aucubin in Eucommia ulmoides Oliver leaves on collagen synthesis. Biol. Pharm. Bull, 21: 1306-1310, 1998 https://doi.org/10.1248/bpb.21.1306
  15. 이동선, 변상요. 두충(Eucommla umoldes oliver) 조성물이 골다공증에 미치는 효과. 한국생물공학회지 16: 614-619, 2001
  16. Galibert, L., Tometsko, M.E., Anderson, D.M., Cosman, D., Dougall, W.C. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily. J. Biol. Chem. 273: 34120-34127, 1998 https://doi.org/10.1074/jbc.273.51.34120
  17. Christiansen, P. The skeleton in primary hyperparathyroidism: a review focusing on bone remodeling, structure, mass, and fracture. APMIS. Suppl, 102: 1-52, 2001
  18. Takayanagi, H., Iizuka, H., Juji, T., Nakagawa, T., Yamamoto, A., Miyazaki, T., Koshihara, Y., Oda, H., Nakamura, K., Tanaka, S. Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 43: 259-269, 2000 https://doi.org/10.1002/1529-0131(200002)43:2<259::AID-ANR4>3.0.CO;2-W
  19. Tanaka, S., Miyazaki, T., Fukuda, A., Akiyama, T., Kadono, Y., Wakeyama, H., Kono, S., Hoshikawa, S., Nakamura, M., Ohshima, Y., Hikita, A., Nakamura, I., Nakamura, K. Molecular mechanism of the life and death of the osteoclast. Ann. N.Y. Acad. Sci. 1068: 180-186, 2006 https://doi.org/10.1196/annals.1346.020
  20. Huang, H., Chang, E.J., Ryu, J., Lee, Z.H., Lee, Y., Kim, H.H. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem. Biophys. Res. Commun. 351: 99-105, 2006 https://doi.org/10.1016/j.bbrc.2006.10.011
  21. Yamashita, T., Yao, Z., Li, F., Zhang, Q., Badell, I.R., Schwarz, E.M., Takeshita, S., Wagner, E.F., Noda, M., Matsuo, K., Xing, L., Boyce, B.F. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 282: 18245-18253, 2007 https://doi.org/10.1074/jbc.M610701200