References
- Boyle, W.J., Simonet, W.S., Lacey, D.L. Osteoclast differentiation and activation. Nature. 423: 337-342, 2003 https://doi.org/10.1038/nature01658
- Teitelbaum, S.L., Ross, F.P. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4: 638-649, 2003 https://doi.org/10.1038/nrg1122
- Takayanagi, H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83: 170-179, 2005 https://doi.org/10.1007/s00109-004-0612-6
- Yasuda, H., Shima, N., Nakagawa, N., Yamaguchi, K., Kinosaki, M., Tomoyasu, A., Yano, K., Goto, M., Murakami, A., Tsuda, E., Morinaga T., Higashio, K., Udagawa, N., Takahashi, N., Suda, T. Osteoclast differentiation factor is a ligand for osteoprotegerin/ osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl. Acad. Sci. USA. 95: 3597-3602, 1998
- Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y.X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J., Boyle, W.J. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 93: 165-176, 1998 https://doi.org/10.1016/S0092-8674(00)81569-X
- Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., Martin, T.J. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20: 345-357, 1999 https://doi.org/10.1210/er.20.3.345
- Rao, A., Luo, C., Hogan, P.G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15: 707-747, 1997 https://doi.org/10.1146/annurev.immunol.15.1.707
- Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3: 889-901, 2002 https://doi.org/10.1016/S1534-5807(02)00369-6
- Takayanagi, H. shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7: 292-304, 2007 https://doi.org/10.1038/nri2062
- Hayman, A.R., Jones, S.J., Boyde, A., Foster, D., Colledge, W.H., Carlton, M.B., Evans, M.J., Cox, T.M. Mice lacking tartrate-resistant acid phosphatase (Acp 5) have disrupted endochondral ossification and mild osteopetrosis. Development. 122: 3151-3162, 1996
- Chung, M.H. and Park, C.W. studies on the development of antihypertensive agents from Korean crude drug I, II, III. Kor. J. Pharmacog, 6: 29, 1975
- Ko, Y.O., Sung, H.G. A study on the cutting of Eucommia ulmoides oliv, Kor. J. Pharmcog, 7: 59, 1976
- Shi, O., Ravikumar, P., Hung, F., Buckner, C., Whitlock, H. Isolation and synthesis of Pinoresinol diglucoside, a major antihypertensive principle of Tu-chong (Eucommia ulnosides Oliver). J. AM. Chem. Soc, 98: 5412-5413, 1976 https://doi.org/10.1021/ja00433a070
- Yanmei, L., Takahiro, S., Koichi, M., Katwuya, K., Qing-ming, C. and Shushichi, T. The Promoting effect of geniposidc acid and aucubin in Eucommia ulmoides Oliver leaves on collagen synthesis. Biol. Pharm. Bull, 21: 1306-1310, 1998 https://doi.org/10.1248/bpb.21.1306
- 이동선, 변상요. 두충(Eucommla umoldes oliver) 조성물이 골다공증에 미치는 효과. 한국생물공학회지 16: 614-619, 2001
- Galibert, L., Tometsko, M.E., Anderson, D.M., Cosman, D., Dougall, W.C. The involvement of multiple tumor necrosis factor receptor (TNFR)-associated factors in the signaling mechanisms of receptor activator of NF-κB, a member of the TNFR superfamily. J. Biol. Chem. 273: 34120-34127, 1998 https://doi.org/10.1074/jbc.273.51.34120
- Christiansen, P. The skeleton in primary hyperparathyroidism: a review focusing on bone remodeling, structure, mass, and fracture. APMIS. Suppl, 102: 1-52, 2001
- Takayanagi, H., Iizuka, H., Juji, T., Nakagawa, T., Yamamoto, A., Miyazaki, T., Koshihara, Y., Oda, H., Nakamura, K., Tanaka, S. Involvement of receptor activator of nuclear factor κB ligand/osteoclast differentiation factor in osteoclastogenesis from synoviocytes in rheumatoid arthritis. Arthritis Rheum. 43: 259-269, 2000 https://doi.org/10.1002/1529-0131(200002)43:2<259::AID-ANR4>3.0.CO;2-W
- Tanaka, S., Miyazaki, T., Fukuda, A., Akiyama, T., Kadono, Y., Wakeyama, H., Kono, S., Hoshikawa, S., Nakamura, M., Ohshima, Y., Hikita, A., Nakamura, I., Nakamura, K. Molecular mechanism of the life and death of the osteoclast. Ann. N.Y. Acad. Sci. 1068: 180-186, 2006 https://doi.org/10.1196/annals.1346.020
- Huang, H., Chang, E.J., Ryu, J., Lee, Z.H., Lee, Y., Kim, H.H. Induction of c-Fos and NFATc1 during RANKL-stimulated osteoclast differentiation is mediated by the p38 signaling pathway. Biochem. Biophys. Res. Commun. 351: 99-105, 2006 https://doi.org/10.1016/j.bbrc.2006.10.011
- Yamashita, T., Yao, Z., Li, F., Zhang, Q., Badell, I.R., Schwarz, E.M., Takeshita, S., Wagner, E.F., Noda, M., Matsuo, K., Xing, L., Boyce, B.F. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 282: 18245-18253, 2007 https://doi.org/10.1074/jbc.M610701200