• Title/Summary/Keyword: Noetherian rings

Search Result 89, Processing Time 0.027 seconds

A NOTE ON COHOMOLOGICAL DIMENSION OVER COHEN-MACAULAY RINGS

  • Bagheriyeh, Iraj;Bahmanpour, Kamal;Ghasemi, Ghader
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.275-280
    • /
    • 2020
  • Let (R, m) be a Noetherian local Cohen-Macaulay ring and I be a proper ideal of R. Assume that βR(I, R) denotes the constant value of depthR(R/In) for n ≫ 0. In this paper we introduce the new notion γR(I, R) and then we prove the following inequalities: βR(I, R) ≤ γR(I, R) ≤ dim R - cd(I, R) ≤ dim R/I. Also, some applications of these inequalities will be included.

THE OHM-RUSH CONTENT FUNCTION III: COMPLETION, GLOBALIZATION, AND POWER-CONTENT ALGEBRAS

  • Epstein, Neil;Shapiro, Jay
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1311-1325
    • /
    • 2021
  • One says that a ring homomorphism R → S is Ohm-Rush if extension commutes with arbitrary intersection of ideals, or equivalently if for any element f ∈ S, there is a unique smallest ideal of R whose extension to S contains f, called the content of f. For Noetherian local rings, we analyze whether the completion map is Ohm-Rush. We show that the answer is typically 'yes' in dimension one, but 'no' in higher dimension, and in any case it coincides with the content map having good algebraic properties. We then analyze the question of when the Ohm-Rush property globalizes in faithfully flat modules and algebras over a 1-dimensional Noetherian domain, culminating both in a positive result and a counterexample. Finally, we introduce a notion that we show is strictly between the Ohm-Rush property and the weak content algebra property.

ON SUBSTRUCTURES OF MONOGENIC R-GROUPS

  • Cho, Yong-Uk
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.401-406
    • /
    • 2008
  • In this paper, we will introduce the noetherian quotients in R-groups, and then investigate the related substructures of the near-ring R and G and the R-group G. Also, applying the annihilator concept in R-groups and d.g. near-rings, we will survey some properties of the substructures of R and G in monogenic Rgroups, and show that R becomes a ring for faithful monogenic R-groups with some condition.

  • PDF

PRIME BASES OF WEAKLY PRIME SUBMODULES AND THE WEAK RADICAL OF SUBMODULES

  • Nikseresht, Ashkan;Azizi, Abdulrasool
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1183-1198
    • /
    • 2013
  • We will introduce and study the notion of prime bases for weakly prime submodules and utilize them to derive some formulas on the weak radical of submodules of a module. In particular, we will show that every one dimensional integral domain weakly satisfies the radical formula and state some necessary conditions on local integral domains which are semi-compatible or satisfy the radical formula and also on Noetherian rings which weakly satisfy the radical formula.

Bipolar fuzzy ideals of Near Rings

  • Baik, Hyoung-Gu
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.3
    • /
    • pp.394-398
    • /
    • 2012
  • Based on the theory of a bipolar fuzzy set, the notion of a bipolar fuzzy subring/ideal of a Near ring is introduced and related properties are investigated. Characterizations of a bipolar fuzzy subnear ring and a bipolar fuzzy ideal in near ring are established. Relations between a bipolar fuzzy ideal and a level cut are discussed. Using bipolar fuzzy ideals, we discuss characterizations of Noetherian Near ring.

On Lifting Modules and Weak Lifting Modules

  • Tutuncu, Derya Keskin;Tribak, Rachid
    • Kyungpook Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.445-453
    • /
    • 2005
  • We say that a module M is weak lifting if M is supplemented and every supplement submodule of M is a direct summand. The module M is called lifting, if it is weak lifting and amply supplemented. This paper investigates the structure of weak lifting modules and lifting modules having small radical over commutative noetherian rings.

  • PDF

SOME RESULTS ON S-ACCR PAIRS

  • Hamed, Ahmed;Malek, Achraf
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.337-345
    • /
    • 2022
  • Let R ⊆ T be an extension of a commutative ring and S ⊆ R a multiplicative subset. We say that (R, T) is an S-accr (a commutative ring R is said to be S-accr if every ascending chain of residuals of the form (I : B) ⊆ (I : B2) ⊆ (I : B3) ⊆ ⋯ is S-stationary, where I is an ideal of R and B is a finitely generated ideal of R) pair if every ring A with R ⊆ A ⊆ T satisfies S-accr. Using this concept, we give an S-version of several different known results.

On Injectivity of Modules via Semisimplicity

  • Nguyen, Thi Thu Ha
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.641-655
    • /
    • 2022
  • A right R-module N is called pseudo semisimple-M-injective if for any monomorphism from every semisimple submodule of M to N, can be extended to a homomorphism from M to N. In this paper, we study some properties of pseudo semisimple-injective modules. Moreover, some results of pseudo semisimple-injective modules over formal triangular matrix rings are obtained.

SEMISIMPLE DIMENSION OF MODULES

  • Amirsardari, Bahram;Bagheri, Saeid
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.711-719
    • /
    • 2018
  • In this paper we define and study a new kind of dimension called, semisimple dimension, that measures how far a module is from being semisimple. Like other kinds of dimensions, this is an ordinal valued invariant. We give some interesting and useful properties of rings or modules which have semisimple dimension. It is shown that a noetherian module with semisimple dimension is an artinian module. A domain with semisimple dimension is a division ring. Also, for a semiprime right non-singular ring R, if its maximal right quotient ring has semisimple dimension as a right R-module, then R is a semisimple artinian ring. We also characterize rings whose modules have semisimple dimension. In fact, it is shown that all right R-modules have semisimple dimension if and only if the free right R-module ${\oplus}^{\infty}_{i=1}$ R has semisimple dimension, if and only if R is a semisimple artinian ring.

ON ω-LOCAL MODULES AND Rad-SUPPLEMENTED MODULES

  • Buyukasik, Engin;Tribak, Rachid
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.971-985
    • /
    • 2014
  • All modules considered in this note are over associative commutative rings with an identity element. We show that a ${\omega}$-local module M is Rad-supplemented if and only if M/P(M) is a local module, where P(M) is the sum of all radical submodules of M. We prove that ${\omega}$-local nonsmall submodules of a cyclic Rad-supplemented module are again Rad-supplemented. It is shown that commutative Noetherian rings over which every w-local Rad-supplemented module is supplemented are Artinian. We also prove that if a finitely generated Rad-supplemented module is cyclic or multiplication, then it is amply Rad-supplemented. We conclude the paper with a characterization of finitely generated amply Rad-supplemented left modules over any ring (not necessarily commutative).