DOI QR코드

DOI QR Code

THE OHM-RUSH CONTENT FUNCTION III: COMPLETION, GLOBALIZATION, AND POWER-CONTENT ALGEBRAS

  • Epstein, Neil (Department of Mathematical Sciences George Mason University) ;
  • Shapiro, Jay (Department of Mathematical Sciences George Mason University)
  • Received : 2020.08.26
  • Accepted : 2021.03.10
  • Published : 2021.11.01

Abstract

One says that a ring homomorphism R → S is Ohm-Rush if extension commutes with arbitrary intersection of ideals, or equivalently if for any element f ∈ S, there is a unique smallest ideal of R whose extension to S contains f, called the content of f. For Noetherian local rings, we analyze whether the completion map is Ohm-Rush. We show that the answer is typically 'yes' in dimension one, but 'no' in higher dimension, and in any case it coincides with the content map having good algebraic properties. We then analyze the question of when the Ohm-Rush property globalizes in faithfully flat modules and algebras over a 1-dimensional Noetherian domain, culminating both in a positive result and a counterexample. Finally, we introduce a notion that we show is strictly between the Ohm-Rush property and the weak content algebra property.

Keywords

Acknowledgement

We offer our thanks to the anonymous referee, whose careful reading and numerous comments improved the presentation of the paper.

References

  1. N. Bourbaki, Elements of mathematics. Commutative algebra, translated from the French, Hermann, Paris, 1972.
  2. R. Dedekind, Uber einen arithmetischen Satz von Gauss, Mittheilungen der Deutschen Mathematischen Gesellschaft in Prag, Tempsky, 1892, pp. 1-11.
  3. P. Eakin and J. Silver, Rings which are almost polynomial rings, Trans. Amer. Math. Soc. 174 (1972), 425-449. https://doi.org/10.2307/1996117
  4. N. Epstein and J. Shapiro, A Dedekind-Mertens theorem for power series rings, Proc. Amer. Math. Soc. 144 (2016), no. 3, 917-924. https://doi.org/10.1090/proc/12661
  5. N. Epstein and J. Shapiro, The Ohm-Rush content function, J. Algebra Appl. 15 (2016), no. 1, 1650009, 14 pp. https://doi.org/10.1142/S0219498816500092
  6. N. Epstein and J. Shapiro, Gaussian elements of a semicontent algebra, J. Pure Appl. Algebra 222 (2018), no. 11, 3784-3793. https://doi.org/10.1016/j.jpaa.2018.02.007
  7. N. Epstein and J. Shapiro, The Ohm-Rush content function II. Noetherian rings, valuation domains, and base change, J. Algebra Appl. 18 (2019), no. 5, 1950100, 23 pp.https://doi.org/10.1142/S0219498819501007
  8. R. W. Gilmer, Jr., Some applications of the Hilfssatz von Dedekind-Mertens, Math. Scand. 20 (1967), 240-244. https://doi.org/10.7146/math.scand.a-10833
  9. W. Hassler and R. Wiegand, Extended modules, J. Commut. Algebra 1 (2009), no. 3, 481-506. https://doi.org/10.1216/JCA-2009-1-3-481
  10. I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, MA, 1970.
  11. H. Matsumura, Commutative ring theory, translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986.
  12. F. Mertens, Uber einen algebraischen Satz , S. B. Akad. Wiss. Wien (2a) 101 (1892), 1560-1566.
  13. P. Nasehpour, On the Anderson-Badawi ωR[X] (I[X]) = ωR(I) conjecture, Arch. Math. (Brno) 52 (2016), no. 2, 71-78. https://doi.org/10.5817/AM2016-2-71
  14. D. G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Philos. Soc. 55 (1959), 282-288. https://doi.org/10.1017/s030500410003406x
  15. J. Ohm and D. E. Rush, Content modules and algebras, Math. Scand. 31 (1972), 49-68. https://doi.org/10.7146/math.scand.a-11411
  16. H. Prufer, Untersuchungen uber Teilbarkeitseigenschaften in Korpern, J. Reine Angew. Math. 168 (1932), 1-36. https://doi.org/10.1515/crll.1932.168.1
  17. D. E. Rush, Content algebras, Canad. Math. Bull. 21 (1978), no. 3, 329-334. https://doi.org/10.4153/CMB-1978-057-8
  18. H. Tsang, Gauss's lemma, Ph.D. thesis, University of Chicago, 1965.