
J. Korean Math. Soc. 50 (2013), No. 6, pp. 1183–1198
http://dx.doi.org/10.4134/JKMS.2013.50.6.1183

PRIME BASES OF WEAKLY PRIME SUBMODULES AND

THE WEAK RADICAL OF SUBMODULES

Ashkan Nikseresht and Abdulrasool Azizi

Abstract. We will introduce and study the notion of prime bases for
weakly prime submodules and utilize them to derive some formulas on the
weak radical of submodules of a module. In particular, we will show that
every one dimensional integral domain weakly satisfies the radical formula
and state some necessary conditions on local integral domains which are
semi-compatible or satisfy the radical formula and also on Noetherian
rings which weakly satisfy the radical formula.

1. Introduction

In this paper all rings are commutative and with identity, all modules are
unitary, R denotes a ring and M denotes an R-module. Also by N we mean
the set of positive integers and N

* = N ∪ {0}. We indicate the relation of
containment and strict containment by ⊆ and ⊂, respectively. Furthermore
N ≤ M (N < M) means that N is a submodule (proper submodule) of M .

Prime ideals of rings play an important role in commutative ring theory,
hence many have tried to generalize this concept to modules. A proper sub-
module P of M is called prime, when from rm ∈ P for some r ∈ R and m ∈ M ,
we can conclude either m ∈ P or rM ⊆ P (see for example [2, 9, 10, 11]). Let
(P : M) be the set of all r ∈ R such that rM ⊆ P . If P is a prime submodule,
then P = (P : M) is a prime ideal of R and we say that P is P-prime.

Another generalization of prime ideals was proposed in [6]. There a proper
submodule W of M is said to be weakly prime, if from rsm ∈ W for r, s ∈ R
and m ∈ M , we can conclude either rm ∈ W or sm ∈ W . One can easily
see that it is equivalent to asserting that (W : m) is a prime ideal for every
m ∈ M \W .

If W is weakly prime, then we consider C(W ) (or just C) to be

C(W ) = {(W : m) | m ∈ M \W} ,
and we say that W is C-weakly prime.
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If W is C-weakly prime, then by [1, Lemma 2.1], C is a chain of prime ideals
with respect to inclusion, hence

⋂ C = (W : M) and
⋃ C = Z

(

M
W

)

are prime
ideals, where Z(A) = {r ∈ R | ∃ 0 6= x ∈ A, rx = 0} denotes the set of zero
divisors of an R-module A. Also obviouslyW is P-prime if and only if C = {P}.

Recall that for an ideal I of R, the intersection of all prime ideals of R
containing I is called the radical of I and is denoted by

√
I. Similarly if N

is a submodule of M , the intersection of prime (weakly prime) submodules of
M containing N is called the radical (weak radical) of N and we denote it by
radM (N) [wradM (N)] (or rad(N) (wrad(N)) if there is no subtlety). If M has
no prime (weakly prime) submodule containing N, then we say radM (N) = M
(wradM (N) = M).

A well-known and very useful theorem in commutative ring theory is that√
I =

{

r ∈ R | rk ∈ I for some k ∈ N
}

. To find a similar characterization for
the radical of a submodule, the notion of envelope of a submodule was intro-
duced in [9]. The envelope of a submodule N of M , EM (N) (or E(N) if no
subtlety), is the set of all x ∈ M for which, there exist r ∈ R, m ∈ M and
k ∈ N such that x = rm and rkm ∈ N . The envelope of a submodule is not
necessarily itself a submodule, so we usually use the submodule it generates,
denoted by RE(N).

One can easily verify that for every submodule N of M , we have N ⊆
RE(N) ⊆ wrad(N) ⊆ rad(N). Now if rad(N) = RE(N) (wrad(N) = RE(N)),
it is said that N satisfies (weakly satisfies) the radical formula (s.t.r.f. (weakly
s.t.r.f.)) in M . A module M (weakly) s.t.r.f., when every submodule of M
(weakly) s.t.r.f. in M . Also we say that R (weakly) s.t.r.f., if every R-module
(weakly) s.t.r.f. If for every submodule N of M , we have wrad(N) = rad(N), it
is said that M is semi-compatible. Also if every R-module is semi-compatible,
we say the ring R is semi-compatible. Clearly a ring s.t.r.f., if and only if it is
semi-compatible and weakly s.t.r.f.

Many have studied when a ring or a module s.t.r.f. (see [2, 7, 9, 10, 11]). For
example in [7], Noetherian rings which s.t.r.f. are characterized and in [10] it
is proved that every finite dimensional arithmetic ring (that is, a ring in which
for every three ideals I, J and K, we have I + (J ∩K) = (I + J) ∩ (I + K))
s.t.r.f.

In [4] a simpler form of rings and modules which s.t.r.f. are introduced and
studied.

For some references on semi-compatible rings and modules, one may study
[1, 3, 5].

In Section 2, we will introduce and study the concept of prime bases and
the standard prime basis of a submodule. Particularly we will prove that a
submodule is weakly prime if and only if it has a prime basis. Also we will
study when the standard prime basis of a weakly prime submodule is finite.

In Section 3, we will utilize the concept of prime bases to investigate rings
which weakly s.t.r.f. or are semi-compatible. In particular, we will show that
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every one dimensional integral domain weakly s.t.r.f. and show that a Noether-
ian domain weakly s.t.r.f. if and only if it has Krull dimension one. Furthermore
we will state conditions on local domains which s.t.r.f. or are semi-compatible
and conditions on Noetherian rings which weakly s.t.r.f.

2. Prime bases of weakly prime submodules

Let W be a weakly prime submodule of an R-module M and S a multiplica-
tively closed subset (MCS) of R. It is easy to see that ifWS 6= MS, then WS is a
weakly prime submodule of MS and conversely if W is a weakly prime submod-
ule of MS, then W c (by which, in this paper we denote W ∩M =

{

x | x
1 ∈ W

}

)
is a weakly prime submodule of M (cf. [1, Section 2]). But unlike prime sub-
modules, it is quite possible that W 6= W c

S , for a weakly prime submodule W
of M with WS 6= MS . For example if P ⊂ Q are two distinct prime ideals of
R, then for the R-module M = R⊕R, we have (P⊕Q) c

P = P⊕R, although
P⊕Q is a weakly prime submodule of M. Two sorts of submodules of the form
W c

S prove to be useful in the study of weakly prime submodules, which are
introduced in the following.

Notation 1. Let W be a weakly prime submodule of M, and suppose m ∈
M \W. We consider A(W ), Wm and Wm as follows:

A(W ) = {W c
S | W c

S 6= M, S is an MCS of R},
Wm = {x ∈ M | (W : m) ⊂ (W : x)},
Wm = {x ∈ M | (W : m) ⊆ (W : x)}.

We denote A(W ), just by A if there is no ambiguity.

It is clear that Wm’s and Wm’s are submodules of M.
Suppose W is weakly prime and m ∈ M \ W. Then P = (W : m) is a

prime ideal and one can easily see that Wm = W c
P , so Wm ∈ A. Also recall

that C(W ) = {(W : x) | x ∈ M \ W} is a chain of prime ideals, hence the
set S(m) = R \⋃{(W : x) | (W : x) ⊂ (W : m)} is a multiplicatively closed
subset of R, and it is easy to observe that Wm = W c

S(m) . Therefore Wm ∈ A.

Furthermore obviously m ∈ Wm \Wm and W ⊆ Wm ⊂ Wm.
Note that we take the intersection of an empty family of submodules of M

to be M .

Lemma 2.1 ([8, Proposition 2.5]). For every submodule N of M and each

prime ideal P of R, the intersection of all P-prime submodules of M containing

N is (N + PM) c
P and it is itself a P-prime submodule, if it is a proper

submodule.

Next proposition states some preliminary properties of Wm and Wm.

Proposition 2.2. Suppose that W is a weakly prime submodule of M , S is an

MCS of R, P = (W : M) and Q = Z
(

M
W

)

.
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(i) W c
S =

⋂{Wm | m ∈ M \ W,S ∩ (W : m) = ∅} =
⋃{Wm | m ∈

M \W, S ∩ (W : m) 6= ∅}
(ii) W is contained in a P-prime submodule, if and only if Wx = M for

some x ∈ M , if and only if P = (W : x) for some x ∈ M , if and only

if
⋃

m∈M\W Wm 6= M .

(iii)
⋂

m∈M\W Wm 6= W if and only if W = Wx for some x ∈ M , if and

only if Q = (W : x) for some x ∈ M.
(iv)

⋃

m∈M\W Wm = M and
⋃

m∈M\W

Wm = W c
P =

⋂

{P | W ⊆ P is a P-prime submodule of M}.

(v)
⋂

m∈M\W Wm = W and
⋂

m∈M\W Wm = (WT )
c, where T = R \

⋃{(W : m) | m ∈ M \W, (W : m) ⊂ Q}.
Proof. (i) Assume x ∈ W c

S \ W . Then (W : x) ∩ S 6= ∅ and since x ∈ Wx,

we have W c
S ⊆ ⋃{Wm | m ∈ M \ W, S ∩ (W : m) 6= ∅} ∪ W . Now let

m,m′ ∈ M \ W be such that (W : m) ∩ S = ∅ and (W : m′) ∩ S 6= ∅, say
s ∈ (W : m′) ∩ S. Then (W : m) ⊂ (W : m′), because {(W : y) | y ∈ M \W}
is a chain and s ∈ (W : m′) \ (W : m). Therefore Wm′ ⊆ Wm and thus
⋃{Wm | S ∩ (W : m) 6= ∅} ∪W ⊆ ⋂{Wm | S ∩ (W : m) = ∅}. Now suppose
x ∈ M \W c

S . Then (W : x) ∩ S = ∅ and x /∈ Wx. Hence
⋂{Wm | S ∩ (W :

m) = ∅} ⊆ W c
S and the result follows.

(ii) One can easily show that for every x ∈ M , Wx = M if and only if
(W : x) = P. If (W : x) = P, then x /∈ ⋃

m∈M\W Wm = Wx = W c
P 6= M

and W is contained in a P-prime submodule of M by (2.1). If P is P-prime
submodule containing W and x ∈ Wm, then since P ⊆ (W : m) ⊂ (W : x),
there is an r ∈ (W : x) \ P. So rx ∈ W ⊆ P and hence x ∈ P . Therefore
each Wm (and consequently their union) falls in P 6= M . Finally assume that
(W : x) 6= P for all x ∈ M . Then for all x ∈ M there is an m ∈ M such that
(W : m) ⊂ (W : x) (else P =

⋂

m∈M (W : m) = (W : x), a contradiction).
Whence

⋃

m∈M\W Wm = M .

(iii) Similar to (ii). Using (i)–(iii) and their proofs one can readily prove
(iv) and (v). �

Corollary 2.3. For every weakly prime submodule W of M , A(W ) is totally

ordered with respect to inclusion.

Proof. Clearly the inclusion relation induces a total order on A′ = {Wm | m ∈
M \W} ∪ {M} and every element of A is an intersection of elements of A′ by
(2.2)(i), so A is totally ordered, too. �

Let (A,<) be a partially ordered set. If a ∈ A and a+ = min{x ∈ A | a < x}
exists, we say that a has a next element and call a+ the next element of a.
Similarly a− denotes the previous element of a, that is, max{x ∈ A | x < a},
if it exists.
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Corollary 2.4. Let W be a weakly prime submodule of M . A submodule

A ∈ A(W ) has a next (previous) element (with respect to inclusion), if and

only if A = Wm (A = Wm) for some m ∈ M \W , and in this case A+ = Wm

(A− = Wm).

Proof. We prove the claim about the next element, the proof for the previous
element follows from the fact that in the totally ordered set A, if A has a
previous element, then A is the next element of its previous element.

Let A 6= Wm for anym ∈ M \W and assume that A+ exists. Then according
to (2.2)(i), A =

⋂{Wm | A ⊆ Wm, m ∈ M \W}. But each such Wm in the
intersection (and hence A) contains A+ by definition of A+. So A = A+ which
is against the definition of A+.

Now suppose that A = Wm for an m ∈ M \W . Since A ⊂ Wm, it suffices
to show that if B ∈ A and A ⊂ B, then Wm ⊆ B. Suppose not, then by the
previous corollary we must have B ⊂ Wm. But by (2.2)(i), B is a union of
Wx’s. So there exist x ∈ M \W such that Wm ⊂ Wx ⊆ B ⊂ Wm. Therefore
x ∈ Wm \Wm, thus (W : x) = (W : m), a contradiction to Wm 6= Wx. �

Next we state a theorem which investigates the existence and the uniqueness
of what we will call the prime basis of a weakly prime submodule (see Definition
2).

Theorem 2.5. Let W be a proper submodule of M . The following are equiv-

alent.

(i) W is weakly prime.

(ii) There is a family {(Nα,Mα)}α∈A of pairs of submodules of M con-

taining W such that:
(a) Nα is a prime submodule of Mα for all α ∈ A,
(b) (Nα : Mα) = (W : Mα) for all α ∈ A,
(c) (M \W ) ⊆ ⋃

α∈A(Mα \Nα).
(iii) There is a family {(Nα,Mα)}α∈A of pairs of submodules of M con-

taining W satisfying (a), (b), (c) above such that it also has the

following property:
(d) (Nα : Mα) 6= (Nβ : Mβ) for all α 6= β ∈ A.

Also if W is weakly prime, then there exists exactly one family {(Nα,Mα)}α∈A

of pairs of submodules of M containing W, which satisfies all four of the above

conditions.

Proof. (i) ⇒ (iii): We show that the family {(Wx,Wx) | x ∈ M \W} satisfies
all of the above four conditions, where the index set of this family is A =
{[x] | x ∈ M \ W}, where [x] denotes the equivalency class of x under the
relation x ≡ y ⇔ (W : x) = (W : y).

Suppose x, y ∈ M \W . If m ∈ Wx \Wx and rm ∈ Wx for some r ∈ R, then
(W : x) ⊂ (W : rm). Let s ∈ (W : rm) \ (W : x), so rs ∈ (W : m) = (W : x),
because m ∈ Wx \ Wx. But (W : x) is a prime ideal and s /∈ (W : x), thus
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r ∈ (W : x) = (W : Wx) = (Wx : Wx). Consequently Wx is a (W : Wx)-
prime submodule of Wx and (a) and (b) holds. Clearly x ∈ Wx \ Wx and
(Wx : Wx) = (Wy : Wy) if and only if (W : x) = (W : y) if and only if [x] = [y],
whence (c) and (d) follow.

(iii) ⇒ (ii): Trivial.
(ii) ⇒ (i): We must show that (W : x) is a prime ideal, for all x ∈ M \W .

Let α ∈ A be such that x ∈ Mα \Nα. Now

(∗) (W : Mα) ⊆ (W : x) ⊆ (Nα : x) = (Nα : Mα) = (W : Mα),

where the equalities hold by (a) and (b). Hence (W : x) = (Nα : Mα), and it
is a prime ideal of R, because Nα is a prime submodule of Mα. Consequently
W is a weakly prime submodule of M.

To prove the final assertion suppose that W is weakly prime and the family
B = {(Nα,Mα)} satisfies all of the four conditions. We will show that B =
{(Wx,Wx)}x∈M\W . Set Pα = (Nα : Mα).

We will show that for each x ∈ M,

(∗∗) x ∈ Mα \Nα ⇐⇒ (W : x) = (Nα : Mα).

Note that W ⊆ Nα, so if x ∈ Mα \ Nα, then x ∈ M \ W, and the (=⇒)
implication is given by (∗). For the converse implication, suppose (W : x) =
(Nα : Mα). Since (Nα : Mα) is a prime ideal, x ∈ M\W.Then from (c), for some
β ∈ A, we have x ∈ Mβ \Nβ. Hence by (∗), (Nα : Mα) = (W : x) = (Nβ : Mβ),
which implies that β = α, and so x ∈ Mα \Nα.

Now by (∗∗), Mα = Nα ∪ {x ∈ M | (W : x) = Pα}, and so Mα = Nα ∪
〈{x ∈ M | (W : x) = Pα}〉. Thus either Mα = Nα which is impossible, or
Mα = 〈{x ∈ M | (W : x) = Pα}〉.

Fix anm ∈ Mα\Nα. Then m ∈ Wm\Wm and (Wm : Wm) = (W : m) = Pα.
Since {(Wx,Wx)}x∈M\W satisfies the four conditions of the statement, as a

special case of the above argument, we get Wm = 〈{x ∈ M | (W : x) = Pα}〉,
whence Mα = Wm. Also

Nα = Mα\{x ∈ M | (W : x)=Pα}=Wm\{x ∈ M | (W : x) = (W : m)}=Wm.

�

Definition 2. Let W be a submodule of M . Then we call a nonempty family
B = {(Nα,Mα)}α∈A of pairs of submodules of M containing W which satisfies
(a), (b) and (c) of (2.5), a prime basis for W (in M). If moreover B satisfies
(d), we say it is the standard prime basis of W (in M).

In the proof of (2.5), we mentioned that Wm is a prime submodule of Wm.
This raises the question answered below, that if W1,W2 ∈ A, when W1 is prime
(or weakly prime) considered as a submodule of W2.

Remark 2.6. (i) According to Theorem (2.5), a submodule W of M is
weakly prime if and only if it has a prime basis. Also its proof shows
that when W is C-weakly prime, B = {(Wx,Wx) | x ∈ M \W )} is the
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standard prime basis for W in M . Now the map (Wx : Wx) 7→ Px =
(Wx : Wx) = (W : x) is a one to one correspondence between B and
C. Therefore W is prime if and only if |B| = |C| = 1.

(ii) Let W be a weakly prime submodule of M and B be the standard
prime basis of W in M . Suppose that W1,W2 ∈ A(W ). Then using
(i), (2.3) and (2.4), it is easy to see that B′ = {(N,N ′) ∈ B | W1 ⊆
N, N ′ ⊆ W2} is the standard prime basis forW1 inW2. ThereforeW1

is prime in W2, if and only if |B′| = 1, if and only if B′ = {(W1,W2)},
if and only if (W1,W2) ∈ B, if and only if W1 = Wm and W2 = Wm

for some m ∈ M \W .

By (2.5), the standard prime basis of a weakly prime submodule is unique.
But a weakly prime submodule may have distinct prime bases, as the following
example shows.

Example 2.7. Let M = R ⊕ R and W = P⊕ R, where P is a non-maximal
prime ideal of R contained in the maximal ideal M. Then both B = {(W,M)}
and B′ = B ∪ {(W,M⊕R)} are prime bases for W in M .

It is not difficult to prove the next result without any use of (2.5), but we
prove it using (2.5), to show how prime bases can be handled.

Recall that in the following result, wrad(PM) c

P
(PM) is the intersection of

all weakly prime submodule of the module (PM) c
P containing the submodule

PM.
If we set T(M) = {m ∈ M | ∃0 6= r ∈ R, rm = 0}, then by applying the

following result in the case that R is an integral domain, we get wradM (0) =
wrad(00)c(0) = wradT(M)(0), which is [5, Corollary 1.4].

Corollary 2.8. For every R-module M , we have

wradM (0) =
⋂

{

wrad(PM) c

P
(PM) | P is a minimal prime ideal of R

}

.

Proof. To show wradM (0) ⊆ ⋂

{

wrad(PM) c

P
(PM) | P is a minimal prime

ideal of R}, we prove that if for some prime ideal P, we have PM ⊆ W and W
is weakly prime in (PM) c

P , then it is weakly prime in M . If (PM) c
P = M ,

then the claim is clear, so suppose (PM) c
P 6= M . Then by (2.1), (PM) c

P

is a P-prime submodule of M . Let B be a prime basis for W in (PM) c
P and

set B′ = B ∪
{(

(PM) c
P ,M

)}

. It is a routine task to check that B′ is a prime
basis for W in M , which concludes the claim.

Now to prove the converse inclusion, assume that W is a weakly prime
submodule of M . Let P be a minimal prime ideal contained in (W : M). It
suffices to show that either W contains (PM) c

P or W ′ = W ∩ (PM) c
P is a

weakly prime submodule of (PM) c
P (since in both cases wrad(PM) c

P
(PM) ⊆

W ). Suppose W ′ 6= (PM) c
P . Let B be a prime basis for W in M and set

B′ = {(A,A′) | A = B ∩ (PM) c
P , A′ = B′ ∩ (PM) c

P for some (B,B′) ∈ B
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and A 6= A′}. Again it is easy to see that (a), (b) and (c) of (2.5), hold for
B′ (with M replaced with (PM) c

P and W with W ′). Consequently W ′ is a

weakly prime submodule of (PM) c
P and the result is established. �

Next we investigate when weakly prime submodules have finite standard
prime bases.

Proposition 2.9. Let W be a weakly prime submodule of M , A = A(W ) and
B be the standard prime basis of W . Then |A| < ∞, if and only if |B| < ∞, if

and only if every element of A except possibly M , has a next element and each

element of A except possibly W , has a previous element.

Proof. Using (2.2)(i) and (2.6), one can easily see that |A| < ∞, if and only
if |B| < ∞. Also it is clear that if |A| < ∞, then every element except the first
one (which is W ) has a previous element and every element except the last one
(which is M) has a next element.

Conversely, assume that every element of A except possibly M , has a next
element and each element of A except possibly W , has a previous element but
|A| = ∞. Let A0 ∈ A. Then either there exist infinite elements of A containing
A0 or infinite elements of A are contained in A0. Assume that the former holds.

Set Ai = A+
i−1 for each i ∈ N. Note that by (2.4), for each i ∈ N there is an

mi ∈ M \W such that Ai = Wmi
and Ai+1 = Wmi

. Let Pi = (W : mi) and set
P =

⋂

i∈N
Pi. Now by (2.2)(i), W c

P =
⋃{Wm | m ∈ M \W, Wm ⊆ W c

P }.
But if Wm ⊆ W c

P , then (W : m) 6⊆ P. Thus for some i ∈ N, we must have

(W : m) 6⊆ Pi, therefore (W : mi) ⊂ (W : m). So m ∈ Ai. Consequently
W c

P =
⋃

i∈N
Ai.

But by our assumption, W c
P has a previous element in A, say B. If each

Ai 6= W c
P , then by (2.3), each Ai ⊆ B and hence W c

P =
⋃

Ai ⊆ B, which
is impossible. So for some k ∈ N, we have Ak = Ak+1 = · · · = W c

P , which is
contrary to the definition of the next element. By a similar argument, we get a
contradiction in the case that infinite elements of A are contained in A0. From
this contradiction, we deduce that |A| < ∞. �

If W is a weakly prime submodule with the finite standard basis {(Ni,Mi) |
1 ≤ i ≤ n}, then by the previous result and (2.2), one of the Mi’s, say M1,
must be M . Now N1 = W or it is of the form Wm for some m ∈ M \ W
and hence it ought to show up in the standard basis as one of the Mi’s, say
M2. Continuing this way, we can assume that Mi+1 = Ni for each 1 ≤ i < n.
Finally we have Nn = W by (2.2). This leads us to a chain

(∗) W = Nn < · · · < N1 < N0 = M

of submodules of M with the property that for all 1 ≤ i ≤ j ≤ n, Ni is a
prime submodule of Ni−1, Pi = (Ni : Ni−1) = (W : Ni−1) and Pi ⊂ Pj .
Conversely, if we have chain of submodules of M , such as (∗), satisfying these
conditions, then clearly {(Ni, Ni−1) | 1 ≤ i ≤ n} is the standard basis for W
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in M . Consequently, in the rest of this paper, if W has a finite standard basis,
we represent this basis by (∗) and say that this chain represents the standard
prime basis of W .

Note that by (2.6)(i) for every weakly prime submodule of M , such as W ,
the standard basis of W has the same cardinality as C(W ). Therefore if R
has no infinite chain of prime ideals (or equivalently has both ACC and DCC
on prime ideals), then the standard basis of every weakly prime submodule of
M is finite. In particular, this happens when R has finite Krull dimension.
According to the following result, another condition under which every weakly
prime submodule of M has a finite standard prime basis, is M being Laskerian.

Here if N =
⋂n

i=1 Qi is a minimal primary decomposition for N , where
Qi is a Pi-primary submodule of M , then by the primary component of N
corresponding to an isolated subset P of {P1, . . . ,Pn}, we mean

⋂{Qi | 1 ≤
i ≤ n, Pi ∈ P}. Note that by the second uniqueness theorem, this component
is independent of the specific primary decomposition.

Theorem 2.10. Let W be a weakly prime submodule of M and assume that

W =
⋂n

i=1 Qi is a minimal primary decomposition for W , where Qi is a Pi-

primary submodule of M . Then, after a possible reordering of Qi’s, we have

P1 ⊂ P2 ⊂ · · · ⊂ Pn and the standard prime basis for W in M is represented

by W = Wn < Wn−1 < · · · < W1 < M , where Wi is the primary component of

W corresponding to the isolated set {P1, . . . ,Pi} of prime ideals belonging to

W .

Proof. We prove the statement by induction on n. If n = 1 then W is both
weakly prime and primary and hence it is a prime submodule and the claim
turns trivial. Suppose n > 1 and let Qi = (Qi : M). Since (W : M) =

⋂n

i=1 Qi

is a prime ideal, Qi = (W : M), for some 1 ≤ i ≤ n, say i = 1. Thus
Q1 = P1 is a prime ideal and therefore Q1 is a prime submodule of M and
(W : M) = (Q1 : M).

Now consider W as a submodule of Q1. It is easy to see that Q′
i = Qi ∩Q1

is a Pi-primary submodule of Q1 and W =
⋂n

i=2 Q
′
i is a minimal primary

decomposition for W in Q1. So by the induction hypothesis after a reordering
of Qi’s for 2 ≤ i ≤ n, we can assume that P2 ⊂ · · · ⊂ Pn and W = Wn <
Wn−1 < · · · < W2 < Q1 represents the standard basis of W in Q1, where

Wj =
⋂j

i=2 Q
′
i =

⋂j

i=1 Qi.
But P1 = (W : M) ⊂ Pi for each 1 < i. Therefore if we set W1 = Q1, then

for each 1 ≤ i ≤ n, Wi is the component of W corresponding to the isolated set
{P1, . . . ,Pi} and W = Wn < Wn−1 < · · · < W1 < M , represents the standard
prime basis of W in M , as required. �

Now we give an example of a weakly prime submodule with an infinite
standard prime basis. For this we need a lemma.

Lemma 2.11. Suppose that Mi is an R-module and Wi is a Ci-weakly prime

submodule of Mi, for each i ∈ I. If the inclusion relation induces a total
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order on C =
⋃

i∈I Ci, then W =
⊕

i∈I Wi (W =
∏

i∈I Wi) is a weakly prime

submodule of M =
⊕

i∈I Mi (M =
∏

i∈I Mi).

Proof. Let m = (mi)i∈I be in M , then (W : m) =
⋂

i∈I(Wi : mi). But
(Wi : mi)’s form a chain of prime ideals and hence their intersection is either
R or a prime ideal. �

Example 2.12. Let R be a ring containing an infinite chain of prime ideals
P1 ⊂ P2 ⊂ · · · and consider W =

⊕

i∈N
Pi as a submodule of M =

⊕

i∈N
R.

Particularly letK be a field and R = K[x1, x2, . . .] and setPi = 〈x1, x2, . . . , xi〉,
for each i ∈ N.

Then by the previous lemma, W is a weakly prime submodule of M. Also
M = Z

(

M
W

)

=
⋃

i∈N
Pi, and it is easy to see that for every m ∈ M \W, there

exists a Pi with (W : m) = Pi. Hence M 6= (W : m) for every m ∈ M.
Therefore by (2.2)(iii) and (2.4), W = W c

M does not have a next element,
hence according to (2.9), the standard basis of W is infinite.

Indeed if we put N0 = M and for each n ∈ N, consider Nn = (⊕n
k=1Pk) ⊕

(⊕k>nR), then
· · · ⊂ N2 ⊂ N1 ⊂ N0 = M

is a standard prime basis of W.

3. The weak radical of submodules

The following theorem helps us to characterize the weak radical of a sub-
module as we will see in (3.3).

Notation 3. Let C = {P1,P2, . . . ,Pn}, where P1 ⊂ P2 · · · ⊂ Pn are prime
ideals of R, and let N be a submodule of M . Set M0 = M , N0 = N and
inductively let Ni = Ni−1 + PiMi−1 and Mi = (Ni)

c
Pi

for each 1 ≤ i ≤ n.

Then we denote Mn by C − wM (N).

Theorem 3.1. Let C = {P1,P2, . . . ,Pn}, where P1 ⊂ P2 ⊂ · · · ⊂ Pn are

prime ideals of R, and suppose N is a submodule of M . Then the intersection

of all C′-weakly prime submodules of M containing N with C′ ⊆ C is C−WM (N)
(if there is no such a submodule, then C − wM (N) = M).

Proof. Suppose that Ni’s and Mi’s are as in Notation (3). First we will show
that Mn = M or Mn is a C′-weakly prime submodule of M with C′ ⊆ C.
Suppose that 1 ≤ i ≤ n. Note that if x ∈ Mi, then for some s ∈ R \ Pi,
sx ∈ Ni = Ni−1 +PiMi−1. Since Mi−1 = (Ni−1)

c
Pi−1

there is an s′ ∈ R \Pi−1

such that s′sx ∈ Ni−1. But Pi−1 ⊆ Pi and so ss′ ∈ R \ Pi−1. Therefore
x ∈ Mi−1 and hence Mi ⊆ Mi−1.

Assume that Mi 6= Mi−1. Then (Mi)Pi
6= (Mi−1)Pi

, for Mi is a contracted
submodule. Also because (Mi)Pi

= (Ni)Pi
= (Ni−1)Pi

+ (Pi)Pi
(Mi−1)Pi

, we

must have
(

(Mi)Pi
: (Mi−1)Pi

)

= (Pi)Pi
. But since (Pi)Pi

is the maximal
ideal of RPi

, (Mi)Pi
is a (Pi)Pi

-prime submodule of (Mi−1)Pi
and thus Mi is

a Pi-prime submodule of Mi−1. Moreover (Mi : Mi−1) = Pi ⊆ (Ni : Mi−1) ⊆
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(Nn : Mi−1) ⊆ (Mn : Mi−1) ⊆ (Mi : Mi−1), that is, (Mi : Mi−1) = (Mn :
Mi−1). Therefore if Mn 6= M , then the chain Mn ≤ Mn−1 ≤ · · · ≤ M0 = M
(deleting the possible repeated terms) represents the standard basis for Mn in
M . Consequently Mn is weakly prime and from the above argument it is clear
that C(Mn) ⊆ C.

If Mn = M , then Mi = M and Ni = N +PiM , for each 1 ≤ i ≤ n. Thus
(N + PiM) c

Pi
= M for all 1 ≤ i ≤ n, whence it follows from (2.1) that M

has no Pi-prime submodule containing N , for each 1 ≤ i ≤ n. Therefore if
C′ ⊆ C, there is no C′-weakly prime submodule of M which contains N , else if
Wk < · · · < W1 < W0 = M represents the standard basis of such a submodule,
then W1 is a Pi-prime submodule of M containing N , for some Pi ∈ C′. Thus
in this case the claim comes true.

Now suppose that Mn 6= M . We will prove by induction on n that every
C′-weakly prime submodule of M which contains N , contains Mn too, assumed
C′ ⊆ C. The base case for n = 1 follows (2.1). Suppose that n > 1 and
Wk < · · · < W1 < M represents the standard basis for a C′-weakly prime
submodule W = Wk of M , where C′ ⊆ C. If M1 ⊆ W , then the claim is clearly
true, so assume that W ′ = W ∩M1 6= M1.

It is clear that W ′ is a weakly prime submodule of M1 and C(W ′) ⊆ C′ ⊆
C. We will show that P1 /∈ C(W ′). To this end, it suffices to show that
(W ′ : M1) 6⊆ P1, because (W ′ : M1) is contained in every element of C(W ′)
(note that W ′ here is considered as a submodule of M1). If P1 /∈ C′, then
clearly P1 /∈ C(W ′), so we suppose that P1 ∈ C′. In this case W1 is a P1-
prime submodule of M and by (2.1), M1 ⊆ W1. Furthermore (W1 : M) is
strictly contained in (W : W1) by definition of standard prime basis. Therefore
P1 = (W : M) ⊂ (W : W1) ⊆ (W : M1) = (W ′ : M1), which completes the
proof of P1 /∈ C(W ′).

Let C2 = {P2,P3, . . . ,Pn}. From the construction of C −wM (N), it is clear
that C − wM (N) = C2 − wM1

(N +P1M). Now since (W : M) ⊆ P1, we have
P1M ⊆ W . Also clearly P1M ⊆ M1, thus N +P1M ⊆ W ′. Hence applying
the induction hypothesis we get that C2 −wM1

(N +P1M) ⊆ W ′ ⊆ W and the
result follows. �

The following lemma, which is of much use in the rest of this paper, states
some preliminary properties of envelopes and radicals of submodules. Here by
L
K
, where K is a submodule of M and L is a subset of M containing K, we

mean {l +K | l ∈ L}.

Lemma 3.2. Let M be an R-module, N and K submodules of M with K ⊆ N .

Also suppose that S is a multiplicatively closed subset of R and L is a subset

of M containing K.

(i) EM
K

(

N
K

)

= EM (N)
K

; radM
K

(

N
K

)

= radM (N)
K

; wradM
K

(

N
K

)

= wradM (N)
K

.

(ii) N
K

= L
K

if and only if N = L+K.

(iii) E(NS) = (E(N))S ; (rad(N))S ⊆ rad(NS); (wrad(N))S ⊆ wrad(NS).
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(iv) If M =
⊕

i∈I Mi and N =
⊕

i∈I Ni, where Ni ≤ Mi ≤ M for each

i ∈ I, then REM (N) =
⊕

i∈I REMi
(Ni).

(v) If MM s.t.r.f. (weakly s.t.r.f.) for all maximal ideals M of R, then M
s.t.r.f. (weakly s.t.r.f.).

(vi) The ring R s.t.r.f. (weakly s.t.r.f.) if and only if radM ′ (0) = REM ′(0)
(wradM ′(0) = REM ′(0)) for every R-module M ′.

Proof. (i), (ii) and (iv) Easy. (iii) See for example [5, Proposition 2.1] and
the proof of [11, Proposition 1.6]. (v) follows from (iii) and the proof of (vi)
follows from (i). �

Note that in part (ii) of the above lemma, although K ⊆ L, but since L is
not necessarily a submodule, the set L+K need not be L.

Corollary 3.3. If R is a one dimensional domain, then R weakly s.t.r.f. and

wrad(0) =
⋂

M∈max(R)(MT(M)) c
M , where max(R) is the set of all maximal

ideals of R.

Proof. According to (3.1), wrad(0) =
⋂

M∈max(R) CM − wM (0), where CM =

{0,M}. But if Mi’s and Ni’s are as in (3.1) with C = CM, one can easily check
that M1 = T(M) and M2 = (MT(M)) c

M . To show that R weakly s.t.r.f.,
due to (3.2), we can assume that (R,M) is local and show that MT(M) =
wrad(0) ⊆ RE(0). Suppose that r ∈ M and m ∈ T (M). Then Ann(m) 6= 0,

and r ∈
√

Ann(m) = M, thus for some n ∈ N, rnm = 0. Hence rm ∈ RE(0),
as required. �

Thus the class of rings which weakly s.t.r.f. is strictly larger than that of
rings which s.t.r.f., as the following example illustrates.

Example 3.4. Let K be a field and R = K[x2, x3], then since S = K[x] is
integral over R, we conclude that R has Krull dimension one. So according to
the previous corollary, R weakly s.t.r.f. Now note that R is Noetherian, hence
by [7, Theorem 1.1], if R s.t.r.f., then it must be a Dedekind domain. But R is
not a Dedekind domain, since it is not integrally closed.

Lemma 3.5. Let N, A and B be submodules of M , such that A ⊆ B ∩N and

C be a finite chain of prime ideals of R. Then C − wB(A) ⊆ C − wM (N).

Proof. By (3.1), C −wB(A) is the intersection of all weakly prime submodules
W of B containing A with C(W ) ⊆ C. But it is easy to check that if W
is a C′-weakly prime submodule of M , containing A, then W ′ = W ∩ B is
either the whole B or a weakly prime submodule of B with C(W ′) ⊆ C′. Thus
C − wB(A) ⊆ C − wM (A) ⊆ C − wM (N). �

Proposition 3.6. If R has finitely many prime ideals, then for every submod-

ule N of M , we have wradM (N) =
⋃

wradMf
(Nf ), where the union is taken

over all finitely generated submodules Nf of N and finitely generated submod-

ules Mf of M with Nf ⊆ Mf .
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Proof. By (3.5),
⋃

wradMf
(Nf ) ⊆ wradM (N). For the converse, first suppose

that C = {P1, . . . ,Pn}, where P1 ⊂ · · · ⊂ Pn are prime ideals of R.
By induction on n, we will prove that C −wM (N) ⊆ ⋃ C −wMf

(Nf ), where
the union is taken over all finitely generated submodules Nf of N and finitely
generated submodules Mf of M with Nf ⊆ Mf . As the base step we take
n = 0, where by ∅ − wM (N) we mean M . So in this case the claim is clear.

Now suppose n > 0. Set Ci = {P1, . . . ,Pi}, C0 = ∅ and assume that
x ∈ C−wM (N). According to the Notation 3, Nn = N+

∑n
i=1 PiCi−1−wM (N)

and C − wM (N) = (Nn)
c

Pn
. Thus for some s ∈ R \ Pn we have sx ∈ N +

∑n
i=1 PiCi−1 − wM (N). That is, there is an a ∈ N and for each 1 ≤ i ≤ n

there exist some ni ∈ N and rij ’s in Pi and mij ’s in Ci−1 − wM (N) such that
sx = a+

∑n

i=1

∑ni

j=1 rijmij .
Now by the induction hypothesis for each 1 ≤ i ≤ n and 1 ≤ j ≤ ni there

are finitely generated submodules Nij and Mij of N and M , respectively, such
that Nij ⊆ Mij and mij ∈ Ci−wMij

(Nij). If M
′ =

∑

Mij+Rx+Ra and N ′ =
∑

Nij +Ra, then by (3.5), all mij ’s are in Ci−wM ′(N ′) and consequently x ∈
(N ′ +

∑n

i=1 PiCi−1 − wM ′ (N ′))
c

Pn
= C−wM ′ (N ′) by the construction in (3.1).

Since x was arbitrary and M ′ and N ′ are finitely generated submodules of M
and N , respectively, with N ′ ⊆ M ′, therefore we have proved the induction
statement.

Now because R has finitely many primes, it has finitely many chains of prime
ideals, say C1, . . . , Cn. According to (3.1), wradM (N) =

⋂n
i=1 Ci − wM (N).

Suppose x ∈ wradM (N). Then by the above argument, for all i’s, there are
finitely generated submodules Mi and Ni of M and N , respectively, with Ni ⊆
Mi such that x ∈ Ci−wMi

(Ni). Therefore if we setM
′ =

∑

Mi andN ′ =
∑

Ni.
Then by (3.5), x ∈ ⋂n

i=1 Ci − wM ′ (N ′), and according to (3.1),
⋂n

i=1 Ci −
wM ′ (N ′) = wradM ′ (N ′), so x ∈ wradM ′(N ′), which completes the assertion.

�

Next we turn our attention to Noetherian rings. But first a lemma.

Lemma 3.7. Suppose that every primary submodule of the R-module M =
R⊕R weakly s.t.r.f. in M . Then

(i) For every prime ideal P of R and any a ∈ R \ P, we have aP ⊆
a2P+P(2), where P(2) = (P2

P)
c is the second symbolic power of P.

(ii) If P is a non-maximal prime ideal of R containing a non-zero divisor

element, then P is not a principal ideal.

Proof. (i) In [12, Lemma 2.3] the same result is proved, supposing that every
primary submodule of M s.t.r.f. in M . One can easily check that the same
proof works if we use weakly s.t.r.f. instead of s.t.r.f.

(ii) On the contrary suppose that Rp = P ⊂ M, for some p ∈ R and a
maximal ideal M of R. Then it is easy to see that Rp2 is primary and hence
P(2) = Rp2. Now by (i), if a ∈ M\P, then ap = ra2p+r′p2 for some r, r′ ∈ R.
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Since p /∈ Z(R), we get a(1 − ra) ∈ Rp. But a /∈ Rp, so 1 − ra ∈ Rp ⊆ M,
which contradicts with a ∈ M. Consequently P is not principal. �

In what follows N(R) is the nilradical of R.

Proposition 3.8. If R is a Noetherian ring, the following are equivalent.

(i) Every primary submodule of the R-module M = R⊕R weakly s.t.r.f.

in M .

(ii) Every primary submodule of every R-module M weakly s.t.r.f. in M .

(iii) Every primary submodule of every R-module M s.t.r.f. in M .

(iv) R is Artinian or R is one dimensional and N(R) is an Artinian R-

module.

(v) Every non-maximal prime ideal P of R is the only P-primary ideal

of R.

(vi) For every non-maximal prime ideal P of R there exists c ∈ R \ P

such that cP = 0.

Proof. The equivalence of (iii) and (vi) is proved in [12, Theorem 2.4] and
that of (iv), (v) and (vi) in [12, Theorem 1.9]. Also (iii) ⇒ (ii) ⇒ (i) is
trivial. The proof of (i) ⇒ (vi) is quite the same as the proof of (ii) ⇒ (iii) of
[12, Theorem 2.4], just use (3.7)(i) instead of [12, Lemma 2.3]. �

Corollary 3.9. If R is a Noetherian domain, then R weakly s.t.r.f. if and only

if dimR ≤ 1.

Proof. If dim R ≤ 1, then by (3.3), R weakly s.t.r.f. Conversely if R weakly
s.t.r.f., then by (3.8), dimR ≤ 1. �

Theorem 3.10. Suppose that R is a Noetherian ring. Then R weakly s.t.r.f.

if and only if every finitely generated R
N(R) -module weakly s.t.r.f.

Proof. (⇒) It is easy to see that if the ring R weakly s.t.r.f., then the ring
R

N(R)weakly s.t.r.f.

(⇐) First assume that R is a reduced ring (that is, N(R) = 0) and every
finitely generated module over R weakly s.t.r.f. We will show that R weakly
s.t.r.f. For this by (3.2)(v), it suffices to show that RM weakly s.t.r.f., for every
maximal idealM ofR. Note that every finitely generated moduleM ′ overRM is
of the form NM for some finitely generated R-module N (If G = {m1, . . . ,mk}
generates M ′ as an M-module, take N to be the R-submodule of M ′ generated
by G). Since R is Noetherian we have (wradN (A))M = wradNM

(AM) for every
submodule A of N by [5, Corollary 2.3]. Therefore by (3.2)(iii), every finitely
generated RM-module weakly s.t.r.f., hence we can suppose that R is local.

Now by (3.8)(iv), dim R ≤ 1. If R is zero dimensional, then according to
[11, Theorem 2.8], R s.t.r.f. and so weakly s.t.r.f. Now assume that R is one
dimensional. Since R is Noetherian it has finitely many minimal primes and
since it is local it has exactly one maximal ideal, so R has finitely many prime
ideals. Now by (3.6), wradM (0) =

⋃{wradMf
(0) | Mf is a finitely generated
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submodule of M} =
⋃{REMf

(0) | Mf is a finitely generated submodule of
M} ⊆ REM (0). Therefore for every R-module M , wradM (0) = REM (0).
Consequently the result follows from (3.2)(vi), in case R is a reduced ring.

Now for the general case, first note that by the above argument R
N(R) weakly

s.t.r.f. Hence by (3.8)(iv), dim R = dim R
N(R) ≤ 1 and again we can assume

dim R = 1. Also by (3.8)(v), every non-maximal prime ideal P of R is the
only P-primary ideal of R. So by [7, Proposition 2.6], there exist maximal
ideals M1,M2, . . . ,Mn and k1, k2, . . . , kn ∈ N such that

(∗) N(R) ∩Mk1

1 ∩Mk2

2 ∩ · · · ∩Mkn
n = 0.

Similar to the proof of [7, Proposition 2.5], one can see that if R
N(R) weakly

s.t.r.f. and (∗) holds, then R weakly s.t.r.f. �

We end this paper with stating some conditions on local integral domains
which s.t.r.f. or are semi-compatible.

Theorem 3.11. Suppose that (R, M) is a local integral domain and M =
R⊕R.

(i) If M is semi-compatible and P is any prime ideal of R, then either

P is principal or P = MP.

(ii) If M s.t.r.f., then P = MP for every non-maximal prime ideal of R.
Furthermore either M is principal or M = M2.

Proof. (i) Suppose that P is not principal. Choose arbitrary elements a ∈ P

and b ∈ P \ Ra and set N = P(a, b). If P is a prime submodule of M
containing N , then either PM ⊆ P or (a, b) ∈ P . Since a, b ∈ P, in both cases
(a, b) ∈ P. Therefore rad(N) = rad(R(a, b)) and since M is semi-compatible
wrad(N) = rad(N) = rad(R(a, b)). In particular (a, b) ∈ wrad(N).

It is easy to check that W1 = {(x, y) | xb = ya} is a 0-prime submodule of
M containing R(a, b). Let W2 = (PW1)

c
P , then N ⊆ W2 and either W2 = W1

or W2 is a P-prime submodule of W1 (for PP ⊆ ((W2)P : (W1)P)). Similarly
for W3 = MW2 +PW1, either W3 = W2 or W3 is an M-prime submodule of
W2. Also clearly N ⊆ W3 and one can easily check that if Wi 6= Wi−1, then
(Wi : Wi−1) ⊆ (W3 : Wi−1), where 1 ≤ i ≤ 3 and W0 = M . So if we delete the
possible repeated terms of the chain W3 ≤ W2 ≤ W1 < W0 = M , it represents
the standard basis of W3 in M . Consequently, W3 is a weakly prime submodule
of M.

If (x, y) ∈ W1, then by the definition of W1, xb ∈ Ra and since b /∈ Ra,
x is not a unit, thus x ∈ M. Whence W1 ⊆ M ⊕ R. Thus we deduce that
PW1 ⊆ (PM) ⊕ P, W2 ⊆ ((PPMP)⊕PP)

c ⊆ (P ⊕ P) and finally W3 ⊆
(

(MP)⊕ (MP)
)

+
(

(MP)⊕P
)

= (MP)⊕P.
But (a, b) ∈ wrad(N) ⊆ W3 ⊆ (MP) ⊕ P, thus a ∈ MP. Since a was an

arbitrary element of P, we conclude P ⊆ MP.
(ii) The proof follows from (i) and (3.7)(ii). �
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