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SOME RESULTS ON S-ACCR PAIRS

Ahmed Hamed and Achraf Malek

Abstract. Let R ⊆ T be an extension of a commutative ring and S ⊆ R

a multiplicative subset. We say that (R, T ) is an S-accr (a commutative

ring R is said to be S-accr if every ascending chain of residuals of the form
(I : B) ⊆ (I : B2) ⊆ (I : B3) ⊆ · · · is S-stationary, where I is an ideal

of R and B is a finitely generated ideal of R) pair if every ring A with
R ⊆ A ⊆ T satisfies S-accr. Using this concept, we give an S-version of

several different known results.

1. Introduction

Rings and modules satisfying the accr condition were introduced by Lu in [7]:
an R-module M satisfies the accr conditions (resp., accr∗) if every ascending
chain of submodules of M of the form (N : B) ⊆ (N : B2) ⊆ (N : B3) ⊆ · · ·
terminates for every submodule N of M and every finitely generated (resp.,
principal) ideal B of R. The ring R satisfies the accr condition if the R-module
R does. Note that if M is a Noetherian module, then M satisfies the accr
condition. Later, Hamed and Hizem [2] generalize this notion by introducing
the definition of modules and rings satisfying the S-accr condition. First let us
recall the following definition. Let R be a commutative ring, S a multiplicative
subset of R such that 1 ∈ S and 0 6∈ S and M an R-module. According to
[2] an increasing sequence (N)n∈N of submodules of M is called S-stationary
if there exist a positive integer k and some s ∈ S such that for each n ≥ k,
sNn ⊆ Nk. We say that M satisfies the S-accr condition if any ascending chain
of residuals of the form (N : B) ⊆ (N : B2) ⊆ (N : B3) ⊆ · · · is S-stationary
where N is a submodule of M and B is a finitely generated ideal of R. The
ring R satisfies the S-accr condition if the R-module R does.

On the other hand, let R ⊆ T be an extension of commutative rings. Recall
from [11] that the extension (R, T ) is called an accr (resp., accr∗) pair if every
ring A with R ⊆ A ⊆ T satisfies accr (resp., accr∗). In [11], the author studied
the accr pair property. He showed that (R,R[X]) is an accr pair if and only if
R is Artinian. Let F1 ⊆ F2 be an extension of fields. The author proved that
the following assertions are equivalent: (1) (F1[X], F2[X]) is an accr pair, (2)
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F2 is algebraic over F1, (3) F2[X] is integral over F1[X] and (4) (F1[X], F2[X])
is an LP. Let T be a ring and M be a T -module. M is said to be a Laskerian
T -module if M is a finitely generated T -module and every proper submodule
N of M is a finite intersection of primary submodules of M. T is said to be a
Laskerian ring if T is Laskerian as a T -module [4].

In this paper, we generalize the concept of an accr pair by introducing the
notion of an S-accr (resp., S-accr∗) pair. For a pair of rings R ⊆ T and S
a multiplicative subset of R, (R, T ) is called an S-accr (resp., S-accr∗) pair
if every ring A with R ⊆ A ⊆ T satisfies S-accr (resp., S-accr∗). Note that
(R, T ) is an S-accr pair if and only if (R, T ) is an S-accr∗ pair. We show
that if (R,R[X]) is an S-accr pair, then R \ Z(R) ⊆ S where S is a saturated
multiplicative subset of R. In the particular case when S consists of units of
R, we find the following well-known result. If (R,R[X]) is an accr pair, then
every non zero-divisor of R must be a unit of R. Also, we prove that for (R, T )
an S-accr pair, the following statements hold:

(1) For each proper ideal A of T disjointed with S, (R/(A ∩ R), T/A) is
an S-accr pair.

(2) Assume that S does not contain zero-divisors of T . Then (S−1R, S−1T )
is an accr pair.

Recall from [6], that a multiplicative subset S of R is called a strongly-multi-
plicative set if for each family (sα)α∈Λ of elements of S we have (∩α∈ΛsαR)∩S 6=
∅. Also, according to [8,9], R is said to be S-Artinian if every descending chain
of ideals I0 ⊇ I1 ⊇ · · · there exist s ∈ S and n ∈ N such that for each k ≥ n,
sIn ⊆ Ik. Let R be a commutative ring and S a strongly multiplicative set. We
show that if R is an S-Artinian ring, then (R, R[X]) is an S-accr pair. We end
this part by showing, under some hypothesis, that R is S-Artinian if and only if
(R, R[X]) is an S-accr pair. Let F1 ⊆ F2 fields. Let X1 be indeterminate over
F2. Let R = F1[X1] (resp., R1 = F1[[X1]]), T = F2[X1] (resp., T1 = F2[[X1]])
and S a multiplicative subset of F1. We prove that the following assertions are
equivalent:

(1) (R, T ) is an S-accr pair.
(2) F2 is an algebraic extension over F1.
(3) (R, T ) is an accr pair.

We end this work by giving an example of an S-accr pair which is not an accr
pair.

2. Main results

Let R be a commutative ring, S be a multiplicative subset of R and M an
R-module. Recall from [2] that an increasing sequence (Nn)n∈N of submodules
of M is called S-stationary if there exist a positive integer k and s ∈ S such
that for each n ≥ k, sNn ⊆ Nk. Also, we say that M satisfies S-accr (resp.,
S-accr∗) if any ascending chain of residuals of the form (N : B) ⊆ (N : B2)
⊆ (N : B3) ⊆ · · · is S-stationary where N is a submodule of M and B is a
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finitely generated (resp., principal) ideal of R. It was shown in [2], that the
properties S-accr and S-accr∗ are equivalent.

Definition. Let R ⊆ T be an extension of a commutative ring and S ⊆ R a
multiplicative subset. We say that (R, T ) is an S-accr (resp., S-accr∗) pair if
every ring A with R ⊆ A ⊆ T satisfies S-accr (resp., S-accr∗).

Remark 2.1. Let S ⊆ R be a multiplicative subset.

(1) (R, T ) is an S-accr pair if and only if it is S-accr∗.
(2) If S consists of units of R, then (R, T ) is an S-accr pair if and only if

it is an accr pair
(3) If (R, T ) is an accr pair, then (R, T ) is an S-accr pair. In Section 3, we

give an example of an S-accr pair which is not an accr pair.

Let A be a commutative ring. We denote by Z(A) the set of all zero-divisors
of R.

Proposition 2.2. Let R be a commutative ring and S ⊆ R a saturated multi-
plicative set. If (R,R[X]) is an S-accr pair, then R \ Z(R) ⊆ S.

Proof. Let α ∈ R\Z(R). We will show that α ∈ S. Let T = R+(1+αX)R[X].
Note that R ⊆ T ⊆ R[X] and T is a subring of R[X]. Now, αX = −1 + (1 +
αX) ∈ T ; so (αX)n ∈ T for all n ≥ 1. Consider the ascending sequence of
ideals of T,

(1 + αX)T : α ⊆ (1 + αX)T : α2 ⊆ · · · .
Since (R,R[X]) is an S-accr pair, T satisfies S-accr; so there exist m ≥ 1 and
s ∈ S such that s((1 + αX)T : αh) ⊆ (1 + αX)T : αm for each h ≥ m. Now,

since (αX)m+1 ∈ T this implies that (1 + αX)(αX)
m+1 ∈ (1 + αX)T. Thus

(1 + αX)Xm+1 ∈ (1 + αX)T : αm+1; so s((1 + αX)Xm+1) ∈ (1 + αX)T : αm.
Hence s(1 + αX)Xm+1αm ∈ (1 + αX)T. This implies that sXm+1αm ∈ T,
because 1 + αX is non zero-divisor.

Now, we have sαm−1Xm = (1 + αX)sαm−1Xm − sαmXm+1 ∈ T, because
(1 +αX)sαm−1Xm ∈ (1 +αX)R[X] ⊆ T and sαmXm+1 ∈ T . Proceeding like
this one can show that sX ∈ T. Thus sX = y+ (1 +αX)P for some P ∈ R[X]
and y ∈ R. Since α is non zero-divisor, we find that P ∈ R. Comparing the
coefficients of X in the tow parts, we obtain s = αa for some a ∈ R. Finally,
since S is saturated, then α ∈ S, and the proof is completed. �

In the particular case when S consists of units of R we find the following
result.

Corollary 2.3 ([11, Proposition 1.3]). Let R be a commutative ring. If
(R,R[X]) is an accr pair, then every non zero-divisor of R must be a unit
of R.

Let R be a commutative ring and S ⊆ R a multiplicative set. Our next
results study the transfer of the S-accr pair property to the localization and
the quotient ring. To prove this we need the following results.
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Lemma 2.4 ([8, Example 3.1(3)]). Let S ⊆ R be a multiplicative subset of R.
If R satisfies the S-accr condition, then S−1R satisfies accr.

Lemma 2.5 ([8, Theorem 3.2]). Let N be a submodule of an R-module M and
let S ⊆ R be a multiplicative subset. Then M satisfies S-accr if and only if N
and M/N satisfy S-accr.

Lemma 2.6. Let R and T be commutative rings with identity, f : R → T a
ring homomorphism and S a multiplicative subset of R such that S ∩kerf = ∅.
If R satisfies the S-accr condition, then f(R) satisfies f(S)-accr.

Proof. Let I be an ideal of f(R) and y be an element of f(R). We will show that
(I : y) ⊆ (I : y2) ⊆ · · · is f(S)-stationary. We have y = f(x) for some x ∈ R. It
is easy to see that (f−1(I) : x) ⊆ (f−1(I) : x2) ⊆ · · · . Since R satisfies S-accr,
there exist s ∈ S and n ∈ N such that s(f−1(I) : xk) ⊆ (f−1(I) : xn) for each
k ≥ n. Now, let k ≥ n and b = f(a) ∈ (I : yk). Since byk ∈ I, then f(axk) ∈ I;
so axk ∈ f−1(I). This implies that sa ∈ (f−1(I) : xn). This equivalent to
f(s)byn ∈ I. Hence the sequence (I : y) ⊆ (I : y2) ⊆ · · · is f(S)-stationary. �

Let R be a commutative ring, S a multiplicative subset of R and I an ideal
of R disjointed with S. Let π : R → R/I be the canonical surjection. Then
π(S) is a multiplicative subset of R/I. The next result improves [11, Lemma
15].

Theorem 2.7. Let S be a multiplicative subset of R and (R, T ) an S-accr pair.
Then the following statements hold.

(1) For each proper ideal A of T disjointed with S, (R/(A ∩ R), T/A) is
an S-accr pair.

(2) Assume that S does not contain zero-divisors of T . Then (S−1R,
S−1T ) is an accr pair.

Proof. (1) Let B be a commutative ring such that R/(A∩R) ⊆ B ⊆ T/A. Let
π : T → T/A be the canonical surjection. Since (R, T ) is an S-accr pair and
R ⊆ π−1(B) ⊆ T, then π−1(B) satisfies S-accr. Hence by Lemma 2.6, B =
π(π−1(B)) satisfies S-accr.

(2) Let B be a commutative ring such that S−1R ⊆ B ⊆ S−1T . Since R
and T satisfy S-accr, then by Lemma 2.4, S−1R and S−1T satisfy accr. Let
I be an ideal of B and b ∈ B. We show that (I : bk)k∈N is stationary. Since
b ∈ B ⊆ S−1T, b = t/s for some t ∈ T and s ∈ S. Then t = t

s
s
1 ∈ B since

S−1R ⊆ B. Consider the ascending sequence of ideals of B ∩ T,
(I ∩ T : t) ⊆ (I ∩ T : t2) ⊆ · · · .

We have R ⊆ S−1R ∩R ⊆ B ∩ T ⊆ T. Since (R, T ) is an S-accr pair, then the
sequence (I∩T : tk)k∈N is S-stationary; so there exist c ∈ S and n ∈ N such that
for all k ≥ n, c(I∩T : tk) ⊆ (I∩T : tn). We will prove that (I : bn+1) = (I : bn).
Let x = α

β ∈ (I : bn+1), where α ∈ T and β ∈ S. Since xbn+1 ∈ I, there

exist γ ∈ T and t′ ∈ S such that xbn+1 = γ
t′ ∈ I. So α

β
tn+1

sn+1 = γ
t′ . Thus
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t′αtn+1 = βsn+1γ. Then αtn+1 = αtn+1

1
t′

t′ = βsn+1γ
t′ = βsn+1

1
γ
t′ ∈ I. This

implies that αtn+1 ∈ I ∩ T ; so α ∈ I ∩ T : tn+1. Thus cαtn ∈ I ∩ T ⊆ I.
As S−1R ⊆ B, cαtn 1

cβsn ∈ I which implies that xbn ∈ I. Hence B satisfies

accr. �

Let R be a commutative ring and S a multiplicative subset of R. Recall
from [8, 9] that R is said to be S-Artinian if for every descending chain of
ideals I0 ⊇ I1 ⊇ · · · there exist s ∈ S and n ∈ N such that for each k ≥ n,
sIn ⊆ Ik. In [9], the authors showed that if R is an S-Artinian ring, then S−1R
is an Artinian ring. Our next proposition gives another proof to this result.
We also study when S−1R is Artinian implies that R is S-Artinian. First, we
need to collect some necessary notions. For an ideal I of R, SatS(I) denotes
the S-saturation of I, that is, SatS(I) = S−1I ∩R. A multiplicative set S of a
ring R is called strongly anti-Archimedean if

∩i≥1siR ∩ S 6= ∅

for every sequence (si)i≥1 ∈ S. Note that every strongly anti-Archimedean
multiplicative set is anti-Archimedean. The converse is not true as was observed
in [5, Example 2.7] and [10, Example 4.7]. Let M be an R-module. According
to [3], the module M is called S-finite if sM ⊆ F for some finitely generated
submodule F of M and some s ∈ S. The module M is called S-Noetherian if
each submodule of M is S-finite. A ring R is said to be S-Noetherian if it is
S-Noetherian as an R-module.

Proposition 2.8. Let R be a commutative ring and S a multiplicative subset
of R.

(1) If R is an S-Artinian ring, then S−1R is an Artinian ring.
(2) Assume that R is an S-Noetherian ring, with S is strongly anti-Archi-

medean which does not contain zero-divisors. If S−1R is Artinian, then
R is an S-Artinian ring.

Proof. (1) Let (Ik)k∈N be a descending chain of ideals of S−1R. For each k ∈ N,
we can find an ideal Jk of R such that Ik is the localization of Jk. Consider the
descending chain of ideals of R

J1 ⊇ J1 ∩ J2 ⊇ J1 ∩ J2 ∩ J3 ⊇ · · · .

Since R is S-Artinian, there exist s ∈ S and n ∈ N∗ such that for each k ≥ n,
s(J1∩J2∩· · ·∩Jn) ⊆ (J1∩J2∩· · ·∩Jk) ⊆ Jk. This implies that S−1(J1∩J2∩
· · · ∩ Jn) = S−1J1 ∩ · · · ∩ S−1Jn = I1 ∩ · · · ∩ In ⊆ S−1Jk = Ik. Hence S−1R is
Artinian.

(2) Let I0 ⊇ I1 ⊇ · · · be a descending chain of ideals of R. Then the sequence
(S−1Ik)k is a descending chain of ideals of S−1R. Since S−1R is Artinian, there
exists an n ∈ N such that for each k ≥ n, S−1Ik = S−1In. This implies that
for each k ≥ n, SatS(Ik) = SatS(In). Now, since R is S-Noetherian, then by
[3, Proposition 2], for each k ≥ n, there exists sk ∈ S such that SatS(Ik)
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= Ik : sk; so for each k ≥ n, Ik : sk = In : sn. Thus skIn ⊆ Ik for each
k ≥ n. Since S is a strongly anti-Archimedean set, then ∩i≥1siR ∩ S 6= ∅. Let
t ∈ ∩i≥1siR ∩ S. Therefore for each k ≥ n, tIn ⊆ skIn ⊆ Ik. Hence R is an
S-Artinian ring. �

Note that every strongly-multiplicative set is strongly anti-Archimedean.
This two notions coincide if S is at most countable and there are true when S
is finite.

Theorem 2.9. Let R be a commutative ring and S a strongly multiplicative
set. If R is S-Artinian, then (R, R[X]) is an S-accr pair.

Proof. Let R ⊆ A ⊆ R[X] be a commutative ring. Let I be an ideal of A
and x ∈ A. We will show that the sequence I : x ⊆ I : x2 ⊆ · · · is S-
stationary. Since R is S-Artinian, then by Proposition 2.8(1), S−1R is Artinian.
So by [11, Theorem 1.1], (S−1R, S−1R[X]) is an accr pair. This implies that
the sequence S−1I :S−1A

x
1 ⊆ S−1I :S−1A (x1 )2 ⊆ · · · of ideals of S−1A is

stationary. Thus there exists n ∈ N such that for all k ≥ n, S−1I :S−1A (x1 )k

= S−1I :S−1A (x1 )n. It is easy to show that S−1I :S−1A (x1 )k = S−1(I :A xk).

Then for all k ≥ n, S−1(I :A x
k) = S−1(I :A x

n). Let k ≥ n. It is easy to show
that for each α ∈ (I :A xk), there exists an sα ∈ S such that sαα ∈ (I :A xn).
Now, since S is a strongly multiplicative set, then (∩α∈(I:Axk)sαR) ∩ S 6= ∅.
Let t ∈ (∩α∈(I:Axk)sαR) ∩ S. It is easy to show that t(I :A xk) ⊆ (I :A xn).
Hence A satisfies S-accr. �

Proposition 2.10. Let R be a commutative ring and S a strongly multiplicative
set without zero-divisors. Assume that for all finitely generated ideal I of R,
SatS(I) = I : s for some s ∈ S. Then the following assertions are equivalent.

(1) (R, R[X]) is an S-accr pair.
(2) R is S-Artinian.

Proof. (1) ⇒ (2). Assume that (R,R[X]) is an S-accr pair. By Theorem
2.7(2), (S−1R,S−1R[X]) is an accr pair. Then by [11, Theorem 1.1], S−1R is
an Artinian ring. Thus S−1R is Noetherian. Now, by [3, Proposition 2(f)], R
is an S-Noetherian ring; so by Proposition 2.8(2), R is S-Artinian.

(2) ⇒ (1). Follows from the previous Theorem 2.9. �

Let F1 ⊆ F2 be fields. Let X1, . . . , Xn be indeterminates over F2. Let R =
F1[X1, . . . , Xn] (resp., R1 = F1[[X1, . . . , Xn]]) and T = F2[X1, . . . , Xn] (resp.,
T1 = F2[[X1, . . . , Xn]]).

The following theorem improves the result of [11, Proposition 3.1].

Theorem 2.11. Let S be a multiplicative subset of F1. If (R, T ) is an S-accr
pair, then F2 is algebraic over F1.

Proof. Let α ∈ F2, α 6= 0. Put H = R[α] + X1T. Consider the ascending
sequence of ideals of H, X1H : α ⊆ X1H : α2 ⊆ · · · . Note that R ⊆ H ⊆ T.
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Since (R, T ) is an S-accr pair, there exist P ∈ S, m ∈ N∗ such that for all
k ≥ m, P (X1H : αk) ⊆ X1H : αm. Now, X1

αm+1 ∈ H and X1

αm+1α
m+1 = X1 ∈

X1H. Then X1

αm+1 ∈ X1H : αm+1. This implies that P X1

αm+1 ∈ X1H : αm; so
PX1α

m

αm+1 ∈ X1H. Hence P
α ∈ H = R[α] + X1T. Therefore, P

α = y + X1t for
some y ∈ R[α] and t ∈ T. Note that y can be expressed as y = f1(α) + z for
some f1(α) ∈ F1[α] and z ∈ (X1, . . . , Xn)T. Thus P

α = f1(α) + z +X1t. Hence
P
α −f1(α) = z+X1t. Take X1 = · · · = Xn = 0, we obtain, P (0,...,0)

α −f1(α) = 0.
Now set g(X) = Xf1(X) − p(0, . . . , 0) ∈ F1[X] and g(α) = 0. Hence F2 is
algebraic over F1. �

Remark 2.12. Let S be a multiplicative subset of F1. If (R1, T1) is an S-accr
pair, then in a similar way one can show that F2 is algebraic over F1.

Corollary 2.13. Let n = 1. Let S be a multiplicative subset of F1. The follow-
ing assertions are equivalent:

(1) (R, T ) is an S-accr pair.
(2) F2 is algebraic over F1.
(3) (R, T ) is an accr pair.

Proof. (1) ⇒ (2). Theorem 2.11.
(2) ⇒ (3). Follows from [11, Proposition 3.4].
(3) ⇒ (1). Obvious. �

3. An example of an S-accr pair which is not an accr pair

In this section we give an example of an S-accr pair which is not an accr
pair. To do it we need the following results.

Definition. Let R ⊆ T be a ring extension and S a multiplicative subset of
R. We call that (R, T ) is an S-Noethrian pair if every ring A with R ⊆ A ⊆ T
is S-Noetherian.

Since every S-Noetherian ring satisfies the S-accr condition [2], then every
S-Noetherian pair is an S-accr pair. In Example 3.4, we show that the reverse
is not true in general.

Theorem 3.1. Let R ⊆ T be an integral domain and S a multiplicative subset
of R. Then the following assertions are equivalent:

(1) (R, T ) is an S-Noetherian pair.
(2) R is S-Noetherian and for all ring A such that R ⊆ A ⊆ T, A/I is an

S-finite R-module for all I proper ideal of A.

Proof. (2) ⇒ (1). Let R ⊆ A ⊆ T . For I = (0), A ' A/(0) which is an S-finite
R-module by hypothesis. As R is S-Noetherian, by [1, Corollary 2.1] A is an
S-Noetherian ring. Hence (R, T ) is an S-Noetherian pair.

(1) ⇒ (2). Suppose That (R, T ) is an S-Noetherian pair. Thus R is an
S-Noetherian ring. Let R ⊆ A ⊆ T and I an ideal of A.
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First case: S ∩ I 6= ∅. It is easy to show that A/I is an S-finite R-module.
Second case: S disjoint with I. Since R ⊆ R + I ⊆ A ⊆ T, then R + I is
an S-Noetherian ring. For all a ∈ I \ (0), aA ⊆ (R + I) and aA is an ideal of
R+I. Since R+I is S-Noetherian, there exist s ∈ S, r1 + i1, . . . , rn+ in ∈ R+I
such that saA ⊆ (r1 + i1)(R + I) + · · · + (rn + in)(R + I) ⊆ aA. This implies
that sA ⊆ ( r1+i1

a )(R + I) + · · · + ( rn+in
a )(R + I). Thus A/I is S-finite as an

(R + I)/I-module where S̄ = {s̄, s ∈ S}. Moreover, R + I/I is a cyclic R-
module generated by 1̄. Therefore there exist s ∈ S, x1, . . . , xn ∈ A such that
s̄A/I ⊆ (R+I)/Ix̄1 +· · ·+(R+I)/Ix̄n = R1̄x̄1 +· · ·+R1̄x̄n = Rx̄1 +· · ·+Rx̄n.
Hence A/I is an S-finite R-module. �

Corollary 3.2. Let R ⊆ T be an integral domain and S a multiplicative subset
of R. Then the following assertions are equivalent:

(1) (R[[X]], T [[X]]) is an S-Noetherian pair.
(2) R[[X]] is an S-Noetherian ring and T is an S-finite R-module.

Proof. (1)⇒ (2). By Theorem 3.1, R[[X]] is S-Noetherian and for I = XT [[X]]
ideal of T [[X]], T [[X]]/I ' T is an S-finite R[[X]]-module. This implies that
T is an S-finite R-module.

(2) ⇒ (1). Since T is an S-finite R-module, T [[X]] is an S-finite R[[X]]-
module. Then by [1, Proposition 2.1], T [[X]] is S-Noetherian as R[[X]]-module.
Let A be a ring such that R[[X]] ⊆ A ⊆ T [[X]] and I an ideal of A. We show
that I is S-finite. Since I is an R[[X]]-submodule of T [[X]], there exist s ∈ S,
P1, . . . , Pn ∈ I such that sI ⊆ P1R[[X]]+ · · ·+PnR[[X]] ⊆ I. This implies that
sI ⊆ P1A+ · · ·+ PnA ⊆ I. Hence A is S-Noetherian. �

Remark 3.3. In the same way we can show (R[X], T [X]) is an S-Noetherian
pair if and only if R[X] is an S-Noetherian ring and T is an S-finite R-module.

Example 3.4. Let R be an anti-Archimedean domain which is not Noetherian.
Take S = R \ {0}. Then S is an anti-Archimedean multiplicative subset of
R. Let T be an S-finite R-module such that R ⊆ T is an extension of an
integral domain. Since R is not Noetherian, R[[X]] is not an accr ring. Thus
(R[[X]], T [[X]]) is not an accr pair. By [3, Corollary 11], R[[X]] is an S-
Noetherian ring. Moreover, T is an S-finite R-module. Then by Corollary 3.2,
(R[[X]], T [[X]]) is an S-Noetherian pair. Hence (R[[X]], T [[X]]) is an S-accr
pair.
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