SOME RESULTS ON S-ACCR PAIRS

Ahmed Hamed and Achraf Malek

Abstract

Let $R \subseteq T$ be an extension of a commutative ring and $S \subseteq R$ a multiplicative subset. We say that (R, T) is an S-accr (a commutative ring R is said to be S-accr if every ascending chain of residuals of the form $(I: B) \subseteq\left(I: B^{2}\right) \subseteq\left(I: B^{3}\right) \subseteq \cdots$ is S-stationary, where I is an ideal of R and B is a finitely generated ideal of R) pair if every ring A with $R \subseteq A \subseteq T$ satisfies S-accr. Using this concept, we give an S-version of several different known results.

1. Introduction

Rings and modules satisfying the accr condition were introduced by Lu in [7]: an R-module M satisfies the accr conditions (resp., accr*) if every ascending chain of submodules of M of the form $(N: B) \subseteq\left(N: B^{2}\right) \subseteq\left(N: B^{3}\right) \subseteq \ldots$ terminates for every submodule N of M and every finitely generated (resp., principal) ideal B of R. The ring R satisfies the accr condition if the R-module R does. Note that if M is a Noetherian module, then M satisfies the accr condition. Later, Hamed and Hizem [2] generalize this notion by introducing the definition of modules and rings satisfying the S-accr condition. First let us recall the following definition. Let R be a commutative ring, S a multiplicative subset of R such that $1 \in S$ and $0 \notin S$ and M an R-module. According to [2] an increasing sequence $(N)_{n \in \mathbb{N}}$ of submodules of M is called S-stationary if there exist a positive integer k and some $s \in S$ such that for each $n \geq k$, $s N_{n} \subseteq N_{k}$. We say that M satisfies the S-accr condition if any ascending chain of residuals of the form $(N: B) \subseteq\left(N: B^{2}\right) \subseteq\left(N: B^{3}\right) \subseteq \cdots$ is S-stationary where N is a submodule of M and B is a finitely generated ideal of R. The ring R satisfies the S-accr condition if the R-module R does.

On the other hand, let $R \subseteq T$ be an extension of commutative rings. Recall from [11] that the extension (R, T) is called an accr (resp., accr*) pair if every ring A with $R \subseteq A \subseteq T$ satisfies accr (resp., accr*). In [11], the author studied the accr pair property. He showed that $(R, R[X])$ is an accr pair if and only if R is Artinian. Let $F_{1} \subseteq F_{2}$ be an extension of fields. The author proved that the following assertions are equivalent: (1) $\left(F_{1}[X], F_{2}[X]\right)$ is an accr pair, (2)

[^0]F_{2} is algebraic over $F_{1},(3) F_{2}[X]$ is integral over $F_{1}[X]$ and (4) $\left(F_{1}[X], F_{2}[X]\right)$ is an LP. Let T be a ring and M be a T-module. M is said to be a Laskerian T-module if M is a finitely generated T-module and every proper submodule N of M is a finite intersection of primary submodules of $M . T$ is said to be a Laskerian ring if T is Laskerian as a T-module [4].

In this paper, we generalize the concept of an accr pair by introducing the notion of an S-accr (resp., S-accr*) pair. For a pair of rings $R \subseteq T$ and S a multiplicative subset of $R,(R, T)$ is called an S-accr (resp., S-accr*) pair if every ring A with $R \subseteq A \subseteq T$ satisfies S-accr (resp., S-accr*). Note that (R, T) is an S-accr pair if and only if (R, T) is an S-accr* pair. We show that if $(R, R[X])$ is an S-accr pair, then $R \backslash Z(R) \subseteq S$ where S is a saturated multiplicative subset of R. In the particular case when S consists of units of R, we find the following well-known result. If $(R, R[X])$ is an accr pair, then every non zero-divisor of R must be a unit of R. Also, we prove that for (R, T) an S-accr pair, the following statements hold:
(1) For each proper ideal A of T disjointed with $S,(R /(A \cap R), T / A)$ is an \bar{S}-accr pair.
(2) Assume that S does not contain zero-divisors of T. Then $\left(S^{-1} R, S^{-1} T\right)$ is an accr pair.
Recall from [6], that a multiplicative subset S of R is called a strongly-multiplicative set if for each family $\left(s_{\alpha}\right)_{\alpha \in \Lambda}$ of elements of S we have $\left(\cap_{\alpha \in \Lambda} s_{\alpha} R\right) \cap S \neq$ \emptyset. Also, according to $[8,9], R$ is said to be S-Artinian if every descending chain of ideals $I_{0} \supseteq I_{1} \supseteq \cdots$ there exist $s \in S$ and $n \in \mathbb{N}$ such that for each $k \geq n$, $s I_{n} \subseteq I_{k}$. Let R be a commutative ring and S a strongly multiplicative set. We show that if R is an S-Artinian ring, then $(R, R[X])$ is an S-accr pair. We end this part by showing, under some hypothesis, that R is S-Artinian if and only if $(R, R[X])$ is an S-accr pair. Let $F_{1} \subseteq F_{2}$ fields. Let X_{1} be indeterminate over F_{2}. Let $R=F_{1}\left[X_{1}\right]\left(\right.$ resp., $\left.R_{1}=F_{1}\left[\left[X_{1}\right]\right]\right), T=F_{2}\left[X_{1}\right]\left(\right.$ resp., $\left.T_{1}=F_{2}\left[\left[X_{1}\right]\right]\right)$ and S a multiplicative subset of F_{1}. We prove that the following assertions are equivalent:
(1) (R, T) is an S-accr pair.
(2) F_{2} is an algebraic extension over F_{1}.
(3) (R, T) is an accr pair.

We end this work by giving an example of an S-accr pair which is not an accr pair.

2. Main results

Let R be a commutative ring, S be a multiplicative subset of R and M an R-module. Recall from [2] that an increasing sequence $\left(N_{n}\right)_{n \in \mathbb{N}}$ of submodules of M is called S-stationary if there exist a positive integer k and $s \in S$ such that for each $n \geq k, s N_{n} \subseteq N_{k}$. Also, we say that M satisfies S-accr (resp., S-accr*) if any ascending chain of residuals of the form $(N: B) \subseteq\left(N: B^{2}\right)$ $\subseteq\left(N: B^{3}\right) \subseteq \cdots$ is S-stationary where N is a submodule of M and B is a
finitely generated (resp., principal) ideal of R. It was shown in [2], that the properties S-accr and S-accr* are equivalent.
Definition. Let $R \subseteq T$ be an extension of a commutative ring and $S \subseteq R$ a multiplicative subset. We say that (R, T) is an S-accr (resp., S-accr*) pair if every ring A with $R \subseteq A \subseteq T$ satisfies S-accr (resp., S-accr*).

Remark 2.1. Let $S \subseteq R$ be a multiplicative subset.
(1) (R, T) is an S-accr pair if and only if it is S-accr*.
(2) If S consists of units of R, then (R, T) is an S-accr pair if and only if it is an accr pair
(3) If (R, T) is an accr pair, then (R, T) is an S-accr pair. In Section 3, we give an example of an S-accr pair which is not an accr pair.

Let A be a commutative ring. We denote by $Z(A)$ the set of all zero-divisors of R.

Proposition 2.2. Let R be a commutative ring and $S \subseteq R$ a saturated multiplicative set. If $(R, R[X])$ is an S-accr pair, then $R \backslash Z(R) \subseteq S$.
Proof. Let $\alpha \in R \backslash Z(R)$. We will show that $\alpha \in S$. Let $T=R+(1+\alpha X) R[X]$. Note that $R \subseteq T \subseteq R[X]$ and T is a subring of $R[X]$. Now, $\alpha X=-1+(1+$ $\alpha X) \in T$; so $(\alpha X)^{n} \in T$ for all $n \geq 1$. Consider the ascending sequence of ideals of T,

$$
(1+\alpha X) T: \alpha \subseteq(1+\alpha X) T: \alpha^{2} \subseteq \cdots
$$

Since $(R, R[X])$ is an S-accr pair, T satisfies S-accr; so there exist $m \geq 1$ and $s \in S$ such that $s\left((1+\alpha X) T: \alpha^{h}\right) \subseteq(1+\alpha X) T: \alpha^{m}$ for each $h \geq m$. Now, since $(\alpha X)^{m+1} \in T$ this implies that $(1+\alpha X)(\alpha X)^{m+1} \in(1+\alpha X) T$. Thus $(1+\alpha X) X^{m+1} \in(1+\alpha X) T: \alpha^{m+1}$; so $s\left((1+\alpha X) X^{m+1}\right) \in(1+\alpha X) T: \alpha^{m}$. Hence $s(1+\alpha X) X^{m+1} \alpha^{m} \in(1+\alpha X) T$. This implies that $s X^{m+1} \alpha^{m} \in T$, because $1+\alpha X$ is non zero-divisor.

Now, we have $s \alpha^{m-1} X^{m}=(1+\alpha X) s \alpha^{m-1} X^{m}-s \alpha^{m} X^{m+1} \in T$, because $(1+\alpha X) s \alpha^{m-1} X^{m} \in(1+\alpha X) R[X] \subseteq T$ and $s \alpha^{m} X^{m+1} \in T$. Proceeding like this one can show that $s X \in T$. Thus $s X=y+(1+\alpha X) P$ for some $P \in R[X]$ and $y \in R$. Since α is non zero-divisor, we find that $P \in R$. Comparing the coefficients of X in the tow parts, we obtain $s=\alpha a$ for some $a \in R$. Finally, since S is saturated, then $\alpha \in S$, and the proof is completed.

In the particular case when S consists of units of R we find the following result.

Corollary 2.3 ([11, Proposition 1.3]). Let R be a commutative ring. If $(R, R[X])$ is an accr pair, then every non zero-divisor of R must be a unit of R.

Let R be a commutative ring and $S \subseteq R$ a multiplicative set. Our next results study the transfer of the S-accr pair property to the localization and the quotient ring. To prove this we need the following results.

Lemma 2.4 ([8, Example 3.1(3)]). Let $S \subseteq R$ be a multiplicative subset of R. If R satisfies the S-accr condition, then $S^{-1} R$ satisfies accr.
Lemma 2.5 ([8, Theorem 3.2]). Let N be a submodule of an R-module M and let $S \subseteq R$ be a multiplicative subset. Then M satisfies S-accr if and only if N and M / N satisfy S-accr.
Lemma 2.6. Let R and T be commutative rings with identity, $f: R \rightarrow T a$ ring homomorphism and S a multiplicative subset of R such that $S \cap \operatorname{ker} f=\emptyset$. If R satisfies the S-accr condition, then $f(R)$ satisfies $f(S)$-accr.

Proof. Let I be an ideal of $f(R)$ and y be an element of $f(R)$. We will show that $(I: y) \subseteq\left(I: y^{2}\right) \subseteq \cdots$ is $f(S)$-stationary. We have $y=f(x)$ for some $x \in R$. It is easy to see that $\left(f^{-1}(I): x\right) \subseteq\left(f^{-1}(I): x^{2}\right) \subseteq \cdots$. Since R satisfies S-accr, there exist $s \in S$ and $n \in \mathbb{N}$ such that $s\left(f^{-1}(I): x^{k}\right) \subseteq\left(f^{-1}(I): x^{n}\right)$ for each $k \geq n$. Now, let $k \geq n$ and $b=f(a) \in\left(I: y^{k}\right)$. Since $b y^{k} \in I$, then $f\left(a x^{k}\right) \in I$; so $a x^{k} \in f^{-1}(I)$. This implies that $s a \in\left(f^{-1}(I): x^{n}\right)$. This equivalent to $f(s) b y^{n} \in I$. Hence the sequence $(I: y) \subseteq\left(I: y^{2}\right) \subseteq \cdots$ is $f(S)$-stationary.

Let R be a commutative ring, S a multiplicative subset of R and I an ideal of R disjointed with S. Let $\pi: R \rightarrow R / I$ be the canonical surjection. Then $\pi(S)$ is a multiplicative subset of R / I. The next result improves [11, Lemma 15].
Theorem 2.7. Let S be a multiplicative subset of R and (R, T) an S-accr pair. Then the following statements hold.
(1) For each proper ideal A of T disjointed with $S,(R /(A \cap R), T / A)$ is an \bar{S}-accr pair.
(2) Assume that S does not contain zero-divisors of T. Then $\left(S^{-1} R\right.$, $\left.S^{-1} T\right)$ is an accr pair.
Proof. (1) Let B be a commutative ring such that $R /(A \cap R) \subseteq B \subseteq T / A$. Let $\pi: T \rightarrow T / A$ be the canonical surjection. Since (R, T) is an S-accr pair and $R \subseteq \pi^{-1}(B) \subseteq T$, then $\pi^{-1}(B)$ satisfies S-accr. Hence by Lemma 2.6, $B=$ $\pi\left(\pi^{-1}(B)\right)$ satisfies \bar{S}-accr.
(2) Let B be a commutative ring such that $S^{-1} R \subseteq B \subseteq S^{-1} T$. Since R and T satisfy S-accr, then by Lemma $2.4, S^{-1} R$ and $S^{-1} T$ satisfy accr. Let I be an ideal of B and $b \in B$. We show that $\left(I: b^{k}\right)_{k \in \mathbb{N}}$ is stationary. Since $b \in B \subseteq S^{-1} T, b=t / s$ for some $t \in T$ and $s \in S$. Then $t=\frac{t}{s} \frac{s}{1} \in B$ since $S^{-1} R \subseteq B$. Consider the ascending sequence of ideals of $B \cap T$,

$$
(I \cap T: t) \subseteq\left(I \cap T: t^{2}\right) \subseteq \cdots
$$

We have $R \subseteq S^{-1} R \cap R \subseteq B \cap T \subseteq T$. Since (R, T) is an S-accr pair, then the sequence $\left(I \cap T: t^{k}\right)_{k \in \mathbb{N}}$ is S-stationary; so there exist $c \in S$ and $n \in \mathbb{N}$ such that for all $k \geq n, c\left(I \cap T: t^{k}\right) \subseteq\left(I \cap T: t^{n}\right)$. We will prove that $\left(I: b^{n+1}\right)=\left(I: b^{n}\right)$. Let $x=\frac{\alpha}{\beta} \in\left(I: b^{n+1}\right)$, where $\alpha \in T$ and $\beta \in S$. Since $x b^{n+1} \in I$, there exist $\gamma \in T$ and $t^{\prime} \in S$ such that $x b^{n+1}=\frac{\gamma}{t^{\prime}} \in I$. So $\frac{\alpha}{\beta} \frac{t^{n+1}}{s^{n+1}}=\frac{\gamma}{t^{\prime}}$. Thus
$t^{\prime} \alpha t^{n+1}=\beta s^{n+1} \gamma$. Then $\alpha t^{n+1}=\frac{\alpha t^{n+1}}{1} \frac{t^{\prime}}{t^{\prime}}=\frac{\beta s^{n+1} \gamma}{t^{\prime}}=\frac{\beta s^{n+1}}{1} \frac{\gamma}{t^{\prime}} \in I$. This implies that $\alpha t^{n+1} \in I \cap T$; so $\alpha \in I \cap T: t^{n+1}$. Thus cot $t^{n} \in I \cap T \subseteq I$. As $S^{-1} R \subseteq B$, cat $t^{n} \frac{1}{c \beta s^{n}} \in I$ which implies that $x b^{n} \in I$. Hence B satisfies accr.

Let R be a commutative ring and S a multiplicative subset of R. Recall from $[8,9]$ that R is said to be S-Artinian if for every descending chain of ideals $I_{0} \supseteq I_{1} \supseteq \cdots$ there exist $s \in S$ and $n \in \mathbb{N}$ such that for each $k \geq n$, $s I_{n} \subseteq I_{k}$. In [9], the authors showed that if R is an S-Artinian ring, then $S^{-1} R$ is an Artinian ring. Our next proposition gives another proof to this result. We also study when $S^{-1} R$ is Artinian implies that R is S-Artinian. First, we need to collect some necessary notions. For an ideal I of R, $\operatorname{Sat}_{S}(I)$ denotes the S-saturation of I, that is, $\operatorname{Sat}_{S}(I)=S^{-1} I \cap R$. A multiplicative set S of a ring R is called strongly anti-Archimedean if

$$
\cap_{i \geq 1} s_{i} R \cap S \neq \emptyset
$$

for every sequence $\left(s_{i}\right)_{i \geq 1} \in S$. Note that every strongly anti-Archimedean multiplicative set is anti-A rchimedean. The converse is not true as was observed in [5, Example 2.7] and [10, Example 4.7]. Let M be an R-module. According to [3], the module M is called S-finite if $s M \subseteq F$ for some finitely generated submodule F of M and some $s \in S$. The module M is called S-Noetherian if each submodule of M is S-finite. A ring R is said to be S-Noetherian if it is S-Noetherian as an R-module.

Proposition 2.8. Let R be a commutative ring and S a multiplicative subset of R.
(1) If R is an S-Artinian ring, then $S^{-1} R$ is an Artinian ring.
(2) Assume that R is an S-Noetherian ring, with S is strongly anti-Archimedean which does not contain zero-divisors. If $S^{-1} R$ is Artinian, then R is an S-Artinian ring.
Proof. (1) Let $\left(I_{k}\right)_{k \in \mathbb{N}}$ be a descending chain of ideals of $S^{-1} R$. For each $k \in \mathbb{N}$, we can find an ideal J_{k} of R such that I_{k} is the localization of J_{k}. Consider the descending chain of ideals of R

$$
J_{1} \supseteq J_{1} \cap J_{2} \supseteq J_{1} \cap J_{2} \cap J_{3} \supseteq \cdots .
$$

Since R is S-Artinian, there exist $s \in S$ and $n \in \mathbb{N}^{*}$ such that for each $k \geq n$, $s\left(J_{1} \cap J_{2} \cap \cdots \cap J_{n}\right) \subseteq\left(J_{1} \cap J_{2} \cap \cdots \cap J_{k}\right) \subseteq J_{k}$. This implies that $S^{-1}\left(J_{1} \cap J_{2} \cap\right.$ $\left.\cdots \cap J_{n}\right)=S^{-1} J_{1} \cap \cdots \cap S^{-1} J_{n}=I_{1} \cap \cdots \cap I_{n} \subseteq S^{-1} J_{k}=I_{k}$. Hence $S^{-1} R$ is Artinian.
(2) Let $I_{0} \supseteq I_{1} \supseteq \cdots$ be a descending chain of ideals of R. Then the sequence $\left(S^{-1} I_{k}\right)_{k}$ is a descending chain of ideals of $S^{-1} R$. Since $S^{-1} R$ is Artinian, there exists an $n \in \mathbb{N}$ such that for each $k \geq n, S^{-1} I_{k}=S^{-1} I_{n}$. This implies that for each $k \geq n, \operatorname{Sat}_{S}\left(I_{k}\right)=\operatorname{Sat}_{S}\left(I_{n}\right)$. Now, since R is S-Noetherian, then by [3, Proposition 2], for each $k \geq n$, there exists $s_{k} \in S$ such that $\operatorname{Sat}_{S}\left(I_{k}\right)$
$=I_{k}: s_{k}$; so for each $k \geq n, I_{k}: s_{k}=I_{n}: s_{n}$. Thus $s_{k} I_{n} \subseteq I_{k}$ for each $k \geq n$. Since S is a strongly anti-Archimedean set, then $\cap_{i \geq 1} s_{i} R \cap S \neq \emptyset$. Let $t \in \cap_{i \geq 1} s_{i} R \cap S$. Therefore for each $k \geq n, t I_{n} \subseteq s_{k} I_{n} \subseteq I_{k}$. Hence R is an S-Artinian ring.

Note that every strongly-multiplicative set is strongly anti-Archimedean. This two notions coincide if S is at most countable and there are true when S is finite.

Theorem 2.9. Let R be a commutative ring and S a strongly multiplicative set. If R is S-Artinian, then $(R, R[X])$ is an S-accr pair.
Proof. Let $R \subseteq A \subseteq R[X]$ be a commutative ring. Let I be an ideal of A and $x \in A$. We will show that the sequence $I: x \subseteq I: x^{2} \subseteq \cdots$ is S stationary. Since R is S-Artinian, then by Proposition 2.8(1), $S^{-1} R$ is Artinian. So by [11, Theorem 1.1], $\left(S^{-1} R, S^{-1} R[X]\right)$ is an accr pair. This implies that the sequence $S^{-1} I:_{S^{-1} A} \frac{x}{1} \subseteq S^{-1} I:_{S^{-1} A}\left(\frac{x}{1}\right)^{2} \subseteq \cdots$ of ideals of $S^{-1} A$ is stationary. Thus there exists $n \in \mathbb{N}$ such that for all $k \geq n, S^{-1} I:_{S^{-1} A}\left(\frac{x}{1}\right)^{k}$ $=S^{-1} I:_{S^{-1} A}\left(\frac{x}{1}\right)^{n}$. It is easy to show that $S^{-1} I:_{S^{-1} A}\left(\frac{x}{1}\right)^{k}=S^{-1}\left(I:_{A} x^{k}\right)$. Then for all $k \geq n, S^{-1}\left(I:_{A} x^{k}\right)=S^{-1}\left(I:_{A} x^{n}\right)$. Let $k \geq n$. It is easy to show that for each $\alpha \in\left(I:_{A} x^{k}\right)$, there exists an $s_{\alpha} \in S$ such that $s_{\alpha} \alpha \in\left(I:_{A} x^{n}\right)$. Now, since S is a strongly multiplicative set, then $\left(\cap_{\alpha \in\left(I:_{A} x^{k}\right)} s_{\alpha} R\right) \cap S \neq \emptyset$. Let $t \in\left(\cap_{\alpha \in\left(I:_{A} x^{k}\right)} s_{\alpha} R\right) \cap S$. It is easy to show that $t\left(I:_{A} x^{k}\right) \subseteq\left(I:_{A} x^{n}\right)$. Hence A satisfies S-accr.

Proposition 2.10. Let R be a commutative ring and S a strongly multiplicative set without zero-divisors. Assume that for all finitely generated ideal I of R, $S a t_{S}(I)=I: s$ for some $s \in S$. Then the following assertions are equivalent.
(1) $(R, R[X])$ is an S-accr pair.
(2) R is S-Artinian.

Proof. (1) \Rightarrow (2). Assume that $(R, R[X])$ is an S-accr pair. By Theorem $2.7(2),\left(S^{-1} R, S^{-1} R[X]\right)$ is an accr pair. Then by [11, Theorem 1.1], $S^{-1} R$ is an Artinian ring. Thus $S^{-1} R$ is Noetherian. Now, by [3, Proposition 2(f)], R is an S-Noetherian ring; so by Proposition 2.8(2), R is S-Artinian.
$(2) \Rightarrow(1)$. Follows from the previous Theorem 2.9.
Let $F_{1} \subseteq F_{2}$ be fields. Let X_{1}, \ldots, X_{n} be indeterminates over F_{2}. Let $R=$ $F_{1}\left[X_{1}, \ldots, X_{n}\right]$ (resp., $R_{1}=F_{1}\left[\left[X_{1}, \ldots, X_{n}\right]\right]$) and $T=F_{2}\left[X_{1}, \ldots, X_{n}\right]$ (resp., $\left.T_{1}=F_{2}\left[\left[X_{1}, \ldots, X_{n}\right]\right]\right)$.

The following theorem improves the result of [11, Proposition 3.1].
Theorem 2.11. Let S be a multiplicative subset of F_{1}. If (R, T) is an S-accr pair, then F_{2} is algebraic over F_{1}.
Proof. Let $\alpha \in F_{2}, \alpha \neq 0$. Put $H=R[\alpha]+X_{1} T$. Consider the ascending sequence of ideals of $H, X_{1} H: \alpha \subseteq X_{1} H: \alpha^{2} \subseteq \cdots$. Note that $R \subseteq H \subseteq T$.

Since (R, T) is an S-accr pair, there exist $P \in S, m \in \mathbb{N}^{*}$ such that for all $k \geq m, P\left(X_{1} H: \alpha^{k}\right) \subseteq X_{1} H: \alpha^{m}$. Now, $\frac{X_{1}}{\alpha^{m+1}} \in H$ and $\frac{X_{1}}{\alpha^{m+1}} \alpha^{m+1}=X_{1} \in$ $X_{1} H$. Then $\frac{X_{1}}{\alpha^{m+1}} \in X_{1} H: \alpha^{m+1}$. This implies that $P \frac{X_{1}}{\alpha^{m+1}} \in X_{1} H: \alpha^{m}$; so $\frac{P X_{1} \alpha^{m}}{\alpha^{m+1}} \in X_{1} H$. Hence $\frac{P}{\alpha} \in H=R[\alpha]+X_{1} T$. Therefore, $\frac{P}{\alpha}=y+X_{1} t$ for some $y \in R[\alpha]$ and $t \in T$. Note that y can be expressed as $y=f_{1}(\alpha)+z$ for some $f_{1}(\alpha) \in F_{1}[\alpha]$ and $z \in\left(X_{1}, \ldots, X_{n}\right) T$. Thus $\frac{P}{\alpha}=f_{1}(\alpha)+z+X_{1} t$. Hence $\frac{P}{\alpha}-f_{1}(\alpha)=z+X_{1} t$. Take $X_{1}=\cdots=X_{n}=0$, we obtain, $\frac{P(0, \ldots, 0)}{\alpha}-f_{1}(\alpha)=0$. Now set $g(X)=X f_{1}(X)-p(0, \ldots, 0) \in F_{1}[X]$ and $g(\alpha)=0$. Hence F_{2} is algebraic over F_{1}.

Remark 2.12. Let S be a multiplicative subset of F_{1}. If $\left(R_{1}, T_{1}\right)$ is an S-accr pair, then in a similar way one can show that F_{2} is algebraic over F_{1}.

Corollary 2.13. Let $n=1$. Let S be a multiplicative subset of F_{1}. The following assertions are equivalent:
(1) (R, T) is an S-accr pair.
(2) F_{2} is algebraic over F_{1}.
(3) (R, T) is an accr pair.

Proof. (1) \Rightarrow (2). Theorem 2.11.
$(2) \Rightarrow(3)$. Follows from [11, Proposition 3.4].
$(3) \Rightarrow(1)$. Obvious.

3. An example of an S-accr pair which is not an accr pair

In this section we give an example of an S-accr pair which is not an accr pair. To do it we need the following results.

Definition. Let $R \subseteq T$ be a ring extension and S a multiplicative subset of R. We call that (R, T) is an S-Noethrian pair if every ring A with $R \subseteq A \subseteq T$ is S-Noetherian.

Since every S-Noetherian ring satisfies the S-accr condition [2], then every S-Noetherian pair is an S-accr pair. In Example 3.4, we show that the reverse is not true in general.

Theorem 3.1. Let $R \subseteq T$ be an integral domain and S a multiplicative subset of R. Then the following assertions are equivalent:
(1) (R, T) is an S-Noetherian pair.
(2) R is S-Noetherian and for all ring A such that $R \subseteq A \subseteq T, A / I$ is an S-finite R-module for all I proper ideal of A.

Proof. (2) $\Rightarrow(1)$. Let $R \subseteq A \subseteq T$. For $I=(0), A \simeq A /(0)$ which is an S-finite R-module by hypothesis. As R is S-Noetherian, by [1, Corollary 2.1] A is an S-Noetherian ring. Hence (R, T) is an S-Noetherian pair.
$(1) \Rightarrow(2)$. Suppose That (R, T) is an S-Noetherian pair. Thus R is an S-Noetherian ring. Let $R \subseteq A \subseteq T$ and I an ideal of A.

First case: $S \cap I \neq \emptyset$. It is easy to show that A / I is an S-finite R-module. Second case: S disjoint with I. Since $R \subseteq R+I \subseteq A \subseteq T$, then $R+I$ is an S-Noetherian ring. For all $a \in I \backslash(0), a A \subseteq(R+I)$ and $a A$ is an ideal of $R+I$. Since $R+I$ is S-Noetherian, there exist $s \in S, r_{1}+i_{1}, \ldots, r_{n}+i_{n} \in R+I$ such that $s a A \subseteq\left(r_{1}+i_{1}\right)(R+I)+\cdots+\left(r_{n}+i_{n}\right)(R+I) \subseteq a A$. This implies that $s A \subseteq\left(\frac{r_{1}+i_{1}}{a}\right)(R+I)+\cdots+\left(\frac{r_{n}+i_{n}}{a}\right)(R+I)$. Thus A / I is \bar{S}-finite as an $(R+I) / I$-module where $\bar{S}=\{\bar{s}, s \in S\}$. Moreover, $R+I / I$ is a cyclic R module generated by $\overline{1}$. Therefore there exist $s \in S, x_{1}, \ldots, x_{n} \in A$ such that $\bar{s} A / I \subseteq(R+I) / I \bar{x}_{1}+\cdots+(R+I) / I \bar{x}_{n}=R \overline{1} \bar{x}_{1}+\cdots+R \overline{1} \bar{x}_{n}=R \bar{x}_{1}+\cdots+R \bar{x}_{n}$. Hence A / I is an S-finite R-module.

Corollary 3.2. Let $R \subseteq T$ be an integral domain and S a multiplicative subset of R. Then the following assertions are equivalent:
(1) $(R[[X]], T[[X]])$ is an S-Noetherian pair.
(2) $R[[X]]$ is an S-Noetherian ring and T is an S-finite R-module.

Proof. (1) \Rightarrow (2). By Theorem 3.1, $R[[X]]$ is S-Noetherian and for $I=X T[[X]]$ ideal of $T[[X]], T[[X]] / I \simeq T$ is an S-finite $R[[X]]$-module. This implies that T is an S-finite R-module.
$(2) \Rightarrow(1)$. Since T is an S-finite R-module, $T[[X]]$ is an S-finite $R[[X]]-$ module. Then by [1, Proposition 2.1], $T[[X]]$ is S-Noetherian as $R[[X]]$-module. Let A be a ring such that $R[[X]] \subseteq A \subseteq T[[X]]$ and I an ideal of A. We show that I is S-finite. Since I is an $R[[X]]$-submodule of $T[[X]]$, there exist $s \in S$, $P_{1}, \ldots, P_{n} \in I$ such that $s I \subseteq P_{1} R[[X]]+\cdots+P_{n} R[[X]] \subseteq I$. This implies that $s I \subseteq P_{1} A+\cdots+P_{n} A \subseteq I$. Hence A is S-Noetherian.

Remark 3.3. In the same way we can show $(R[X], T[X])$ is an S-Noetherian pair if and only if $R[X]$ is an S-Noetherian ring and T is an S-finite R-module.
Example 3.4. Let R be an anti-Archimedean domain which is not Noetherian. Take $S=R \backslash\{0\}$. Then S is an anti-Archimedean multiplicative subset of R. Let T be an S-finite R-module such that $R \subseteq T$ is an extension of an integral domain. Since R is not Noetherian, $R[[X]]$ is not an accr ring. Thus $(R[[X]], T[[X]])$ is not an accr pair. By [3, Corollary 11], $R[[X]]$ is an S Noetherian ring. Moreover, T is an S-finite R-module. Then by Corollary 3.2, $(R[[X]], T[[X]])$ is an S-Noetherian pair. Hence $(R[[X]], T[[X]])$ is an S-accr pair.

References

[1] H. Ahmed and H. Sana, S-Noetherian rings of the forms $\mathcal{A}[X]$ and $\mathcal{A}[[X]]$, Comm. Algebra 43 (2015), no. 9, 3848-3856. https://doi.org/10.1080/00927872.2014.924127
[2] H. Ahmed and H. Sana, Modules satisfying the S-Noetherian property and S-ACCR, Comm. Algebra 44 (2016), no. 5, 1941-1951. https://doi.org/10.1080/00927872. 2015. 1027377
[3] D. D. Anderson and T. Dumitrescu, S-Noetherian rings, Comm. Algebra 30 (2002), no. 9, 4407-4416. https://doi.org/10.1081/AGB-120013328
[4] N. Bourbaki, Commutative Algebra, Addison-Wesley, Reading. MA. 1972.
[5] D. E. Dobbs, Ahmes expansions of formal Laurent series and a class of nonArchimedean integral domains, J. Algebra 103 (1986), no. 1, 193-201. https://doi. org/10.1016/0021-8693(86)90177-8
[6] A. Hamed and A. Malek, S-prime ideals of a commutative ring, Beitr. Algebra Geom. 61 (2020), no. 3, 533-542. https://doi.org/10.1007/s13366-019-00476-5
[7] C.-P. Lu, Modules and rings satisfying (accr), Proc. Amer. Math. Soc. 117 (1993), no. 1, 5-10. https://doi.org/10.2307/2159690
[8] W. Maaref, A. Benhissi, and A. Hamed, On S-Artinian rings and modules, submitted.
[9] E. S. Sevim, U. Tekir, and S. Koc, S-Artinian rings and finitely S-cogenerated rings, J. Algebra Appl. 19 (2020), no. 3, 2050051, 16 pp. https://doi.org/10.1142/ S0219498820500516
[10] P. B. Sheldon, How changing $D[[x]]$ changes its quotient field, Trans. Amer. Math. Soc. 159 (1971), 223-244. https://doi.org/10.2307/1996008
[11] S. Visweswaran, $A C C R$ pairs, J. Pure Appl. Algebra 81 (1992), no. 3, 313-334. https: //doi.org/10.1016/0022-4049(92)90063-L

Ahmed Hamed
Department of Mathematics
Faculty of Sciences
Monastir 5031, Tunisia
Email address: hamed.ahmed@hotmail.fr
Achraf Malek
Department of Mathematics
Faculty of Sciences
Monastir 5031, Tunisia
Email address: achraf_malek@yahoo.fr

[^0]: Received April 2, 2021; Revised July 14, 2021; Accepted July 23, 2021.
 2010 Mathematics Subject Classification. Primary 13B, 13C, 13E05, 13E10.
 Key words and phrases. S-accr, S-Noetherian, pair of rings.

