Browse > Article
http://dx.doi.org/10.4134/JKMS.j200475

THE OHM-RUSH CONTENT FUNCTION III: COMPLETION, GLOBALIZATION, AND POWER-CONTENT ALGEBRAS  

Epstein, Neil (Department of Mathematical Sciences George Mason University)
Shapiro, Jay (Department of Mathematical Sciences George Mason University)
Publication Information
Journal of the Korean Mathematical Society / v.58, no.6, 2021 , pp. 1311-1325 More about this Journal
Abstract
One says that a ring homomorphism R → S is Ohm-Rush if extension commutes with arbitrary intersection of ideals, or equivalently if for any element f ∈ S, there is a unique smallest ideal of R whose extension to S contains f, called the content of f. For Noetherian local rings, we analyze whether the completion map is Ohm-Rush. We show that the answer is typically 'yes' in dimension one, but 'no' in higher dimension, and in any case it coincides with the content map having good algebraic properties. We then analyze the question of when the Ohm-Rush property globalizes in faithfully flat modules and algebras over a 1-dimensional Noetherian domain, culminating both in a positive result and a counterexample. Finally, we introduce a notion that we show is strictly between the Ohm-Rush property and the weak content algebra property.
Keywords
Commutative algebra; content algebras; Ohm-Rush; completion; extended ideals; faithfully flat; Dedekind domain;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. Nasehpour, On the Anderson-Badawi ωR[X] (I[X]) = ωR(I) conjecture, Arch. Math. (Brno) 52 (2016), no. 2, 71-78. https://doi.org/10.5817/AM2016-2-71   DOI
2 N. Bourbaki, Elements of mathematics. Commutative algebra, translated from the French, Hermann, Paris, 1972.
3 N. Epstein and J. Shapiro, A Dedekind-Mertens theorem for power series rings, Proc. Amer. Math. Soc. 144 (2016), no. 3, 917-924. https://doi.org/10.1090/proc/12661   DOI
4 N. Epstein and J. Shapiro, The Ohm-Rush content function, J. Algebra Appl. 15 (2016), no. 1, 1650009, 14 pp. https://doi.org/10.1142/S0219498816500092   DOI
5 N. Epstein and J. Shapiro, The Ohm-Rush content function II. Noetherian rings, valuation domains, and base change, J. Algebra Appl. 18 (2019), no. 5, 1950100, 23 pp.https://doi.org/10.1142/S0219498819501007   DOI
6 D. E. Rush, Content algebras, Canad. Math. Bull. 21 (1978), no. 3, 329-334. https://doi.org/10.4153/CMB-1978-057-8   DOI
7 W. Hassler and R. Wiegand, Extended modules, J. Commut. Algebra 1 (2009), no. 3, 481-506. https://doi.org/10.1216/JCA-2009-1-3-481   DOI
8 H. Tsang, Gauss's lemma, Ph.D. thesis, University of Chicago, 1965.
9 J. Ohm and D. E. Rush, Content modules and algebras, Math. Scand. 31 (1972), 49-68. https://doi.org/10.7146/math.scand.a-11411   DOI
10 H. Prufer, Untersuchungen uber Teilbarkeitseigenschaften in Korpern, J. Reine Angew. Math. 168 (1932), 1-36. https://doi.org/10.1515/crll.1932.168.1   DOI
11 D. G. Northcott, A generalization of a theorem on the content of polynomials, Proc. Cambridge Philos. Soc. 55 (1959), 282-288. https://doi.org/10.1017/s030500410003406x   DOI
12 F. Mertens, Uber einen algebraischen Satz , S. B. Akad. Wiss. Wien (2a) 101 (1892), 1560-1566.
13 R. W. Gilmer, Jr., Some applications of the Hilfssatz von Dedekind-Mertens, Math. Scand. 20 (1967), 240-244. https://doi.org/10.7146/math.scand.a-10833   DOI
14 I. Kaplansky, Commutative Rings, Allyn and Bacon, Inc., Boston, MA, 1970.
15 H. Matsumura, Commutative ring theory, translated from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1986.
16 N. Epstein and J. Shapiro, Gaussian elements of a semicontent algebra, J. Pure Appl. Algebra 222 (2018), no. 11, 3784-3793. https://doi.org/10.1016/j.jpaa.2018.02.007   DOI
17 P. Eakin and J. Silver, Rings which are almost polynomial rings, Trans. Amer. Math. Soc. 174 (1972), 425-449. https://doi.org/10.2307/1996117   DOI
18 R. Dedekind, Uber einen arithmetischen Satz von Gauss, Mittheilungen der Deutschen Mathematischen Gesellschaft in Prag, Tempsky, 1892, pp. 1-11.