• Title/Summary/Keyword: Noetherian

Search Result 201, Processing Time 0.024 seconds

STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1905-1914
    • /
    • 2013
  • Let D be an integral domain with quotient field K, M a torsion-free D-module, X an indeterminate, and $N_v=\{f{\in}D[X]|c(f)_v=D\}$. Let $q(M)=M{\otimes}_D\;K$ and $M_{w_D}$={$x{\in}q(M)|xJ{\subseteq}M$ for a nonzero finitely generated ideal J of D with $J_v$ = D}. In this paper, we show that $M_{w_D}=M[X]_{N_v}{\cap}q(M)$ and $(M[X])_{w_{D[X]}}{\cap}q(M)[X]=M_{w_D}[X]=M[X]_{N_v}{\cap}q(M)[X]$. Using these results, we prove that M is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-module if and only if $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$-module. This is a generalization of the fact that D is a strong Mori domain if and only if D[X] is a strong Mori domain if and only if $D[X]_{N_v}$ is a Noetherian domain.

HOM AND EXT FUNCTORS OF GENERALIZED INVERSE POLYNOMIAL MODULES

  • Han, Chang-Woo;Park, Sang-Won;Cho, Eun-Ha
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.111-123
    • /
    • 2000
  • Northcott and McKerrow proved that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-1}]$ is an injective left R[xl-module. Park generalize Northcott and McKerrow's result so that if R is a left noetherian ring and E is an injective left R-module, then $E[x^{-S}]$ is an injective left $R[x^s]$-module, where S is a submonoid of N(N is the set of all natural numbers). In this paper we show $$Hom_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Hom_R(M,\;N)[[x^S]]$$ and using the above result and this isomorphism, finally we show that $$Ext^i_{R[x^S]}(M[x^{-S}],\;N[x^{-S}]){\cong}Ext^i_R(M,\;N)[[x^S]]$$.

  • PDF

MODULES SATISFYING CERTAIN CHAIN CONDITIONS AND THEIR ENDOMORPHISMS

  • Wang, Fanggui;Kim, Hwankoo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.549-556
    • /
    • 2015
  • In this paper, we characterize w-Noetherian modules in terms of polynomial modules and w-Nagata modules. Then it is shown that for a finite type w-module M, every w-epimorphism of M onto itself is an isomorphism. We also define and study the concepts of w-Artinian modules and w-simple modules. By using these concepts, it is shown that for a w-Artinian module M, every w-monomorphism of M onto itself is an isomorphism and that for a w-simple module M, $End_RM$ is a division ring.

SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES

  • Naghipour, Ali Reza;Hafshejani, Javad Sedighi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1165-1176
    • /
    • 2020
  • Let M be a module over a commutative ring R. In this paper, we study Int(R, M), the module of integer-valued polynomials on M over R, and IntM(R), the ring of integer-valued polynomials on R over M. We establish some properties of Krull dimensions of Int(R, M) and IntM(R). We also determine when Int(R, M) and IntM(R) are nontrivial. Among the other results, it is shown that Int(ℤ, M) is not Noetherian module over IntM(ℤ) ∩ Int(ℤ), where M is a finitely generated ℤ-module.

COHEN-MACAULAY MODULES OVER NOETHERIAN LOCAL RINGS

  • Bahmanpour, Kamal
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.373-386
    • /
    • 2014
  • Let (R,m) be a commutative Noetherian local ring. In this paper we show that a finitely generated R-module M of dimension d is Cohen-Macaulay if and only if there exists a proper ideal I of R such that depth($M/I^nM$) = d for $n{\gg}0$. Also we show that, if dim(R) = d and $I_1{\subset}\;{\cdots}\;{\subset}I_n$ is a chain of ideals of R such that $R/I_k$ is maximal Cohen-Macaulay for all k, then $n{\leq}{\ell}_R(R/(a_1,{\ldots},a_d)R)$ for every system of parameters $a1,{\ldots},a_d$ of R. Also, in the case where dim(R) = 2, we prove that the ideal transform $D_m(R/p)$ is minimax balanced big Cohen-Macaulay, for every $p{\in}Assh_R$(R), and we give some equivalent conditions for this ideal transform being maximal Cohen-Macaulay.