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COHEN-MACAULAY MODULES OVER NOETHERIAN

LOCAL RINGS

Kamal Bahmanpour

Abstract. Let (R,m) be a commutative Noetherian local ring. In this
paper we show that a finitely generated R-module M of dimension d is
Cohen-Macaulay if and only if there exists a proper ideal I of R such
that depth(M/InM) = d for n ≫ 0. Also we show that, if dim(R) = d
and I1 ⊂ · · · ⊂ In is a chain of ideals of R such that R/Ik is maximal
Cohen-Macaulay for all k, then n ≤ ℓR(R/(a1 , . . . , ad)R) for every system
of parameters a1, . . . , ad of R. Also, in the case where dim(R) = 2,
we prove that the ideal transform Dm(R/ p) is minimax balanced big
Cohen-Macaulay, for every p ∈ AsshR(R), and we give some equivalent
conditions for this ideal transform being maximal Cohen-Macaulay.

1. Introduction

Let R denote a commutative Noetherian ring (with identity), I an ideal of
R, and M a finitely generated R-module. In [11] L. J. Ratliff, Jr., conjectured
about the asymptotic behavior of AssR(M/JnM) when R is a Noetherian do-
main. Subsequently, M. Brodmann in [1] showed that if R is a Noetherian ring,
then the sets AssR(M/JnM) and AssR(J

nM/Jn+1M) are ultimately constant
for large n. Also, based on this result, in [2] he showed that if R is a Noe-
therian ring, then the integers depth(I,M/JnM) and depth(I, JnM/Jn+1M)
take constant values for large n. In particular, the integers depthR(M/JnM)
and depthR(J

nM/Jn+1M) take constant values for large n, whenever (R,m)
is a Noetherian local ring. In Section 2 of this paper we show that if there
exists an ideal J of R in which the constant value of depthR(M/JnM) is equal
to dim(M), then M is Cohen-Macaulay. More precisely, we shall prove the
following characterization of Cohen-Macaulay modules over Noetherian local
rings:
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Theorem 1.1. Let (R,m) be a Noetherian local ring and M be a non-zero

finitely generated R-module of dimension d. Then the following conditions are

equivalent:
(i) M is Cohen-Macaulay.

(ii) There exists a proper ideal I of R such that depthR(M/InM) = d for

all n ≫ 0.

Recall that a finitely generated module M over a Noetherian local ring
(R,m) is said to be maximal Cohen-Macaulay if depthR(M) = dim(M) =
dim(R). Note that if M is a maximal Cohen-Macaulay, then any system of
parameters of R is also a system of parameters of M and therefore it is an
M -regular sequence. In Section 2 we shall prove the following results about
Cohen-Macaulay modules:

Theorem 1.2. Let (R,m) be a Noetherian local ring of dimension d ≥ 1 and

I1 ⊂ I2 ⊂ · · · ⊂ In−1 ⊂ In

be a chain of ideals of R such that for each 1 ≤ k ≤ n, the R-module R/Ik is

maximal Cohen-Macaulay. Then for each system of parameters x1, . . . , xd of

R, we have

n ≤ ℓR(R/(x1, . . . , xd)),

where ℓR(R/(x1, . . . , xd)) denotes the length of the R-module R/(x1, . . . , xd).

Theorem 1.3. Let (R,m) be a Noetherian local ring of dimension d ≥ 1 and

I be an ideal of R such that dim(R/I) = n ≥ 1. Let x1, . . . , xn be a system

of parameters for R/I. If R/I is a Cohen-Macaulay module and the ideal

Q := I + Rx1 + · · · + Rxn is a parameter ideal of R, then there are elements

a1, . . . , ad−n ∈ I such that I = Ra1 + · · ·+Rad−n and x1, . . . , xn, a1, . . . , ad−n

is a system of parameters for R. In particular, if R is Cohen-Macaulay, then

I is generated by an R-sequence.

For proving these results we shall use the basic properties of regular and
quasi regular sequences. Recall that if R is a commutative ring with iden-
tity, M is an R-module, X1, . . . , Xn, n indeterminants and ZR(N) denotes to
the set of all zero-divisors of N in R, for each non-zero R-module N , then
an ordered sequence a1, . . . , an ∈ R is said to be an M -regular sequence if
for all 1 ≤ i ≤ n, ai 6∈ ZR(M/(a1, . . . , ai−1)M) and (a1, . . . , an)M 6= M .
Also a sequence (not necessary ordered) a1, . . . , an ∈ R is said to be an
M -quasi-regular sequence if (a1, . . . , an)M 6= M and for each integer k and
each homogeneous polynomial P (X1, . . . , Xn) ∈ M [X1, . . . , Xn] of degree k,
P (a1, . . . , an) ∈ (a1, . . . , an)

k+1M implies that all the coefficients of P are in
(a1, . . . , an)M .

In the sequel let (R,m) be a Noetherian local ring of dimension d ≥ 1. Let
a1, . . . , ad be a system of parameters (s.o.p.) for R. An R-module M is said
to be big Cohen-Macaulay R-module with respect to a1, . . . , ad if a1, . . . , ad is
an M -regular sequence. Note that the definition does not require that M be
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finitely generated. One of the major open problems in commutative algebra at
the present time is to establish the existence of big Cohen-Macaulay modules
with respect to a given s.o.p. in an arbitrary local Noetherian ring. In [7] M.
Hochster has shown that if the existence of such modules could be established,
then several conjectures in commutative algebra would be settled. Moreover,
Hochster has established the existence of such big Cohen-Macaulay modules
whenever the local ring R contains a field as a subring, or has dimension not
exceeding 2 (see [7, Ch. 4, 5] and [6]). An R-module M for which every s.o.p.
for R is an M -regular sequence is called a balanced big Cohen-Macaulay R-
module. Hochster has shown in [8, §5] that such modules exist whenever R
contains a field as a subring. Note that every finitely generated balanced big
Cohen-Macaulay R-module is maximal Cohen-Macaulay. The existence of such
finitely generated modules over complete Noetherian local rings is an open
problem. In Section 3 we present some equivalent conditions for the existence
of maximal Cohen-Macaulay modules over local Noetherian rings of dimension
2. Also we show that over an arbitrary local Noetherian ring of dimension 2
there exists a minimax balanced big Cohen-Macaulay module. Recall that a
module is called minimax module, when it has a finitely generated submodule
such that the quotient by it is an Artinian module [12].

Throughout this paper, R will always be a commutative Noetherian ring
with non-zero identity and I will be an ideal of R. Note that for an R-module
M , the ith local cohomology module of M with support in V (I) is defined as:

Hi
I(M) = lim

−→
n≥1

ExtiR(R/I
n,M).

We refer the reader to [3] for more details about local cohomology. Recall
that, for each R-module M , all integers j ≥ 0 and all prime ideals p of
R, the jth Bass number of M with respect to p is defined as µj

R(p,M) =

dimk(p) Ext
j
Rp

(k(p),Mp), where k(p) := Rp/pRp. Also, For an Artinian R-

module A we denote by AttR(A) the set of attached prime ideals of A. For any
ideal a of R, we denote {p ∈ SpecR : p ⊇ a} by V (a). We denote the support
of each R-module M by Supp(M). Also, for each R-module M we denote by
AssR(M) (resp. AsshR(M)) the set of associated prime ideals of M (resp. the
set {p ∈ AssR(M) : dim(R/p) = dim(M)}). Moreover, for each R-module M ,
we denote by AnnR(M) the annihilator of M in R. Finally, for each R-module
M , we denote by ER(M) the injective envelope (or injective hull) of M . For
any other unexplained notation and terminology we refer the reader to [3] and
[9].

2. A characterization of Cohen-Macaulay modules

In this section we shall prove some results concerning the Cohen-Macaulay
modules. The main goals of this section are Theorems 2.3, 2.4 and 2.7. The
following lemma, which is a generalization of [4, Proposition 1.4], is needed in
the proof of Lemma 2.2.
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Lemma 2.1. Let R be a commutative ring, I an ideal of R, M a non-zero

R-module, a1, . . . , an ∈ R and J = (a1, . . . , an). If I ⊆ J and a1, . . . , an is an

M/IM -quasi-regular sequence, then a1, . . . , an is an M -quasi-regular sequence.

Proof. It follows easily from the definition that JM 6= M . Let P (X1, . . . , Xn) ∈
M [X1, . . . , Xn] be homogeneous of degree k such that P (a1, . . . , an) ∈ Jk+1M .
Then P (X1, . . . , Xn) ∈ M/IM [X1, . . . , Xn] is homogeneous of degree k and
P (a1, . . . , an) ∈ Jk+1(M/IM), where P = ϕ(P ), with ϕ is the canonical epi-
morphism. So, since a1, . . . , an is a M/IM -quasi-regular sequence and I ⊆ J ,
it follows that the coefficients of P are in J(M/IM), and hence the coefficients
of P are in JM , as required. �

The following lemma is crucial in the proof of Theorem 2.3.

Lemma 2.2. Let (R,m) be a Noetherian local ring and M 6= 0 be a finitely gen-

erated R-module of dimension d ≥ 1. Let x1, . . . , xd ∈ m be a system of parame-

ters for M and I be an ideal of R such that I ⊆ (x1, . . . , xd). If dim(M/IM) =
d and M/IM is a Cohen-Macaulay R-module, then I ⊆ AnnR(M).

Proof. Since dim(M/IM) = d = dim(M) and x1, . . . , xd is a system of
parameters for M , it is easy to see that x1, . . . , xd is a system of param-
eters for M/IM . Therefore, as M/IM is Cohen-Macaulay it follows that
x1, . . . , xd is an M/IM -regular sequence. Hence in view of [9, Theorem 16.2],
it follows that x1, . . . , xd is an M/IM -quasi-regular sequence. Now since
M/IM ∼= (M/mIM)/(IM/mIM), it follows from Lemma 2.1 that x1, . . . , xd

is an M/mIM -quasi regular sequence. Whence, according to [9, Theorem
16.3], it follows that x1, . . . , xd is an M/mIM -regular sequence. Since d ≥ 1, it
follows from the definition that m 6∈ AssR(M/mIM). Therefore, we can deduce
that (0 :M/mIM m) = 0. But it is easy to see that IM/mIM ⊆ (0 :M/mIM m).
Thus, IM/mIM = 0 and so by NAK Lemma we have IM = 0. Which means
I ⊆ AnnR(M), as required. �

The following theorem is the first main result of this section.

Theorem 2.3. Let (R,m) be a Noetherian local ring of dimension d ≥ 1 and

I1 ⊂ I2 ⊂ · · · ⊂ In−1 ⊂ In

be a chain of ideals of R such that for each 1 ≤ k ≤ n, the R-module R/Ik is

maximal Cohen-Macaulay. Then for each system of parameters x1, . . . , xd of

R, we have

n ≤ ℓR(R/(x1, . . . , xd)),

where ℓR(R/(x1, . . . , xd)) denotes the length of the R-module R/(x1, . . . , xd).

Proof. Let 2 ≤ k ≤ n. If Ik ⊆ (x1, . . . , xd) + Ik−1, then as x1 + Ik−1, . . . , xd +
Ik−1 is a system of parameters for local ring R/Ik−1 and by hypothesis the
ring R/Ik ∼= (R/Ik−1)/(Ik/Ik−1) is Cohen-Macaulay, it follows from Lemma
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2.2 that Ik ⊆ AnnR(R/Ik−1) = Ik−1, which is a contradiction. Therefore,
Ik 6⊆ (x1, . . . , xd) + Ik−1 and hence

(x1, . . . , xd) + Ik 6⊆ (x1, . . . , xd) + Ik−1.

Consequently, ℓR(((x1, . . . , xd) + Ik)/((x1, . . . , xd) + Ik−1)) ≥ 1. So, we have

ℓR(R/(x1, . . . , xd)) ≥ ℓR(R/(I1 + (x1, . . . , xd)))

≥ 1 + ℓR((In + (x1, . . . , xd)/(I1 + (x1, . . . , xd))

= 1 + Σn
k=2ℓR(((x1, . . . , xd) + Ik)/((x1, . . . , xd) + Ik−1))

≥ 1 + n− 1 = n.

This completes the proof. �

The following theorem is another application of Lemma 2.2.

Theorem 2.4. Let (R,m, k) be a Noetherian local ring of dimension d ≥ 1
and I be an ideal of R such that dim(R/I) = n ≥ 1. Let x1, . . . , xn be a

system of parameters for R/I. If R/I is a Cohen-Macaulay module and the

ideal Q := I + Rx1 + · · ·+ Rxn is a parameter ideal of R, i.e., Q is generated

by a system of parameters for R, then there are elements a1, . . . , ad−n ∈ I
such that I = Ra1 + · · · + Rad−n and x1, . . . , xn, a1, . . . , ad−n is a system of

parameters for R. In particular, if R is Cohen-Macaulay, then I is generated

by an R-sequence.

Proof. By definition we have

dimk(Q/mQ) = d.

Therefore, as dimk(Q/I)/m(Q/I) = dimk(Q/mQ + I) = n it follows from the
exact sequence

0 → (I +mQ)/mQ → Q/mQ → Q/(I +mQ) → 0

that dimk((I +mQ)/mQ) = d− n. Therefore, there are elements a1, . . . , ad−n

in I such that

(I +mQ)/mQ = (Ra1 + · · ·+Rad−n +mQ)/mQ.

Now we have

Q/(I + mQ) = (x1 + (I +mQ), . . . , xn + (I +mQ)),

and

I +mQ = Ra1 + · · ·+Rad−n +mQ,

which implies Q = Ra1 + · · · + Rad−n + Rx1 + · · · + Rxn + mQ. So by NAK
lemma it follows that Q = Ra1 + · · ·+Rad−n +Rx1 + · · ·+Rxn. Whence, we
can deduce that a1, . . . , ad−n ∈ I is a part of a system of parameters for R so
dim(R/(Ra1+· · ·+Rad−n)) = d−(d−n) = n = dim(R/I). Now it follows from
Lemma 2.2 that I ⊆ (Ra1+ · · ·+Rad−n), and therefore I = Ra1+ · · ·+Rad−n,
as required. �
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The following lemma and its corollary play key role in the proof of second
main result of this section.

Lemma 2.5. Let (R,m) be a Noetherian local ring and M 6= 0 be a finitely

generated R-module of dimension d ≥ 1. Let I be an ideal of R such that

I 6⊆ Rad(AnnR(M)) and dim(M/IM) = d. Then there exists a positive integer

t such that the following statements hold:
(i) dim(InM/In+1M) < d for all integers n ≥ t.
(ii) AssR(M/InM) 6= AsshR(M/InM) for all integers n > t.
(iii) The R-module M/InM is not Cohen-Macaulay for all integers n > t.

Proof. (i) Let AsshR(M) = {q1, . . . , qk}. Then for each 1 ≤ j ≤ k the Rqj
-

module Mqj
has finite length. Let t := max{ℓRq1

(Mq
1
), . . . , ℓRqk

(Mqk
)}. Then

we claim that SuppR(I
nM/In+1M) ∩ AsshR(M) = ∅ for all integers n ≥ t.

Suppose that the contrary be true. Then there is 1 ≤ j ≤ k such that qj ∈

SuppR(I
nM/In+1M). So by definition we have InMqj

6= In+1Mqj
. Therefore,

t ≥ ℓRqj
(Mqj

) ≥ ℓRqj
(Mqj

/In+1Mqj
)

= ℓRqj
(Mqj

/IMqj
) + Σn

s=1ℓRqj
(IsMqj

/Is+1Mqj
) ≥ n+ 1,

and so t ≥ n+ 1, which is a contradiction. Therefore,

SuppR(I
nM/In+1M) ∩ AsshR(M) = ∅

for all integers n ≥ t. Now it is easy to see that dim(InM/In+1M) < d for all
integers n ≥ t.

(ii) Since AssR(I
n−1M/InM) ⊆ AssR(M/InM) and dim(M/InM) =

dim(M/IM) = d, the assertion follows from (i).
(iii) Follows from (ii) using [9, Theorem 17.2]. �

Corollary 2.6. Let (R,m) be a Noetherian local ring and M 6= 0 be a finitely

generated R-module of dimension d. Then for any proper ideal I of R the

following statements are equivalent:
(i) M is Cohen-Macaulay and I ⊆ Rad(AnnR(M)).
(ii) depthR(M/InM) = d for all n ≫ 0.

Proof. The assertion follows from Lemma 2.5. �

Now we are ready to give a characterization of Cohen-Macaulay modules
over Noetherian local rings, which is the second main result of this section.

Theorem 2.7. Let (R,m) be a Noetherian local ring and M be a non-zero

finitely generated R-module of dimension d. Then the following conditions are

equivalent:
(i) M is Cohen-Macaulay.

(ii) There exists a proper ideal I of R such that depthR(M/InM) = d for

all n ≫ 0.

Proof. The assertion follows from Corollary 2.6. �
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3. Cohen-Macaulay modules over Noetherian local rings of small

dimension

In this section we study the existence of Cohen-Macaulay and balanced big
Cohen-Macaulay modules over Noetherian local ring of dimension 2. We shall
use the following lemma in the proof of some results of this section.

Proposition 3.1. Let (R,m) be a Noetherian local domain of dimension d and

M be a finitely generated R-module such that AssR(M) = {0} and µ0
R(0,M) =

n ≥ 1. Then there exists an exact sequence

0 → M → ⊕n
i=1R.

Proof. First let d = 0. Then by hypothesis R is a field and so M is a vector
space over R of dimension of n and hence M ∼= ⊕n

i=1R. Now let d ≥ 1. By
definition it is easy to see that there exists an exact sequence

0 → ER(M) → ⊕n
i=1ER(R).

Hence by assumption F := ⊕n
i=1R we can assume that, M is a finitely generated

submodule of ER(F ).
Let

0 → F → E → E1 → · · ·

be a minimal injective resolution for F . Then in view of the definition we have
ER(E/F ) = E1 and so AssR(E/F ) = AssR(E1). But p ∈ AssR(E1) if and only
if ER(R/ p) is a direct summand of E1 if and only if µ1

R(p, F ) 6= 0 if and only
if µ1

R(p, R) 6= 0 (Because we have F = ⊕n
i=1R and so µ1

R(p, F ) = nµ1
R(p, R)).

Since q = 0 is a prime ideal of R it follows that the zero dimensional local ring
Rq is a field and hence is a Gorenstein ring. Therefore µ1

R(q, F ) = nµ1
R(q, R)) =

0. Hence height(p) ≥ 1 for every p ∈ AssR(E/F ) = AssR(E1).
Now if M ⊆ F , then there is nothing to prove. But, if M 6⊆ F , then

M + F/F is a non-zero finitely generated submodule of E1. Hence, for every
p ∈ AssR(M + F/F ), we have height(p) ≥ 1, which implies height(L) ≥ 1,
where L := AnnR(M + F/F ). Therefore, L 6= 0 and so there is an element
x ∈ L such that x 6= 0. But in this situation it is easy to see that x is an M -
regular element.(Note that by hypothesis we have AssR(M) = {0}.) Therefore,
M ∼= xM ⊆ F. This completes the proof. �

The following theorem, which is the first main result of this section, gives
some equivalent conditions for the existence of maximal Cohen-Macaulay mod-
ules over local Noetherian rings of dimension 2.

Theorem 3.2. Let (R,m) be a local Noetherian ring of dimension 2. Then the

following conditions are equivalent:
(i) There exists a finitely generated R-module M of dimension 2 such that

the R-module H1
m(M) is finitely generated.

(ii) There is p ∈ AsshR(R) such that the R-module H1
m(R/p) is finitely

generated.
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(iii) There is p ∈ AsshR(R) such that the R-module Dm(R/p) is a maximal

Cohen-Macaulay R-module.

(iv) There exists p ∈ AsshR(R) such that for some ideals I ⊃ p of R the

R-module M = I/ p is maximal Cohen-Macaulay and ara(I/ p) = 1.
(v) There exists a maximal Cohen-Macaulay R-module.

Proof. (i)⇒(ii) Let p ∈ AsshR(M). Then it is easy to see that p ∈ AsshR(R).
As, p ∈ AssR(M), it follows from definition that there is an exact sequence

0 → R/p → M → T → 0

for some finitely generated R-module T . This exact sequence induces the fol-
lowing exact sequence

H0
m(T) → H1

m(R/p) → H1
m(M).

Since by hypothesis the R-module H1
m(M) is finitely generated, and the R-

module H0
m(T) is finitely generated it follows that the R-module H1

m(R/p) is
finitely generated.

(ii)⇒(i) Is clear.
(ii)⇒(iii) In view of [3, Theorem 2.2.4], there is an exact sequence

(†) 0 → R/p → Dm(R/p) → H1
m(R/p) → 0,

which implies that the R-module Dm(R/p) is finitely generated. As AssR(M) =
{p} we can find an element x ∈ (m \ p). It is clear that x is an R/p-regular

element and so the sequence 0 → R/p
x
→ R/p, is exact. Therefore, for each

k ≥ 1, there is an exact sequence

0 → HomR(m
k, R/p)

x
→ HomR(m

k, R/p).

By definition we have

Dm(M) = lim
−→
k≥1

HomR(m
k,R/p),

hence it follows that x is a Dm(R/p)-regular element. In particular,

Γm(Dm(R/p)) = 0.

Now the exact sequence (†) induces an exact sequence

(††) 0 → H1
m(R/ p)

f
→ H1

m(R/ p) → H1
m(Dm(R/ p)) → H1

m(H
1
m(R/ p)).

But, from the Grothendieck’s Vanishing Theorem, [3, Theorem 6.1.2], we de-
duce that H1

m(H
1
m(R/ p)) = 0. Consequently, the exact sequence (††) gives the

following exact sequence:

(‡) 0 → H1
m(R/ p)

f
→ H1

m(R/ p) → H1
m(Dm(R/ p)) → 0.

Since by hypothesis the R-module H1
m(R/ p) is of finite length and so is

Artinian, it follows from the exact sequence (‡) that f is an epimorphism
and so H1

m(Dm(R/ p)) = 0. Now using [3, Theorem 6.2.7] and the fact that
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H0
m(Dm(R/ p)) = 0 = H1

m(Dm(R/ p)) it follows that the R-module Dm(R/ p) is
a maximal Cohen-Macaulay R-module.

(iii)⇒(iv) Let p ∈ AsshR(R) such that Dm(R/ p) is a maximal Cohen-
Macaulay R-module. Then the exact sequence

(†) 0 → R/p → Dm(R/p) → H1
m(R/p) → 0

implies

µ0
R/ p

(0,Dm(R/p)) = µ0
R/ p

(0,R/p) = 1.

Therefore, in view of Proposition 3.1 there is an exact sequence 0 → Dm(R/p) →
R/ p. Whence, it follows that Dm(R/p) ∼= I/ p for some ideals I ⊃ p of
R. Thus the R-module M = I/ p is maximal Cohen-Macaulay. Also, as
I/ p ∼= Dm(R/p) it follows from the exact sequence (†) that I/ p has a submod-
ule (Rx + p)/ p ∼= R/ p such that I/(Rx + p) has finite length. Consequently,
mn I ⊆ (Rx+ p) for some positive integer n. If (Rx+ p)/ p = R/ p, then there
is nothing to prove. But in other cases if q is a minimal prime divisor of Rx+p,
then using Principal Ideal Theorem we can deduce that height(q / p) = 1. In
particular, q 6= m. But as mn I ⊆ (Rx+ p) ⊆ q, it follows that I ⊆ q. Now it is
easy to see that Rad(I/ p) = Rad((Rx+ p)/ p). So from the definition we have
ara(I/ p) = 1.

(iv)⇒(v) Is clear.
(v)⇒(i) The assertion follows from [3, Theorem 6.2.7]. �

Before bringing the next Corollary, note that if (R,m) is a Noetherian local
ring of dimension 2 and R is universally catenary with all Cohen-Macaulay
formal fibers, then Dm(R/ p) is finitely generated for all p ∈ AsshR(R).

Corollary 3.3. Let (R,m) be a local Noetherian ring of dimension 2. Then

the following statements hold:
(i) For each finitely generated R-module M of dimension 2, if the R-module

H1
m(M) is finitely generated, then the R-module Dm(M/Γm(M)) is a maximal

Cohen-Macaulay R-module.

(ii) If R is universally catenary with all Cohen-Macaulay formal fibers, then

Dm(R/ p) is a maximal Cohen-Macaulay R-module for all p ∈ AsshR(R).

Proof. (i) As the R-module H1
m(M/Γm(M)) ∼= H1

m(M) is finitely generated,
H0

m(M/Γm(M)) = 0 and dim(M/Γm(M)) = 2, the assertion follows from the
method used in the proof of Theorem 3.2.

(ii) Follows from (i), using [3, Theorem 2.2.4]. �

Proposition 3.4. Let (R,m) be a Cohen-Macaulay local (Noetherian) ring of

dimension d ≥ 1 and p a prime ideal of R. Then the following statements hold:
(i) H1

m(R/p) is not finitely generated if and only if dim(R/p) = 1.
(ii) For every finitely generated R-module N and each p ∈ AttR(H

1
m(N)) we

have dim(R/ p) ≤ 1.
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Proof. (i) “ ⇐ ” is clear. “ ⇒ ” Since H1
m(R/p) is not finitely generated,

it follows that dimR/p ≥ 1. If dimR/p ≥ 2, then p contains an R-regular
sequence x1, . . . , xn of length n = height(p). We have

depth(R/(x1, . . . , xn)) = dimR− n = dimR− height(p) = dimR/p ≥ 2

and so H1
m(R/(x1, . . . , xn)) = 0. Since height((x1, . . . , xn)) = n = height(p)

and (x1, . . . , xn) ⊆ p it follows that p is a minimal prime ideal of (x1, . . . , xn)
and hence p ∈ AssR(R/(x1, . . . , xn)). Therefore, there exists an exact sequence

0 → R/p → R/(x1, . . . , xn) → T → 0

for some finitely generated R-module T . This exact sequence implies that
H1

m(R/p)
∼= H0

m(T). Since T is finitely generated, it follows that H1
m(R/p) is

finitely generated, which is a contradiction.
(ii) In view of [9, Theorem 6.4] N has a prime filteration as 0 = N0 ⊂ N1 ⊂

· · · ⊂ Nn = N of submodules such that for each i we have Ni/Ni−1
∼= R/pi

with pi ∈ Spec(R). We use induction on n. For n = 1 the assertion follows
from (i) and [3, Theorem 7.3.2]. Suppose that n > 1 and the case n − 1 is
settled. Then by inductive hypothesis we have dim(R/ q) ≤ 1 for each q ∈
AttR(H

1
m(Nn−1))∪AttR(H

1
m(Nn/Nn−1)) and so dim(R/AnnR(H

1
m(Nn−1))) ≤ 1

and dim(R/AnnR(H
1
m(Nn/Nn−1))) ≤ 1. The exact sequence

0 → Nn−1 → Nn → Nn/Nn−1 → 0

induces the following exact sequence

H1
m(Nn−1)

f1→ H1
m(Nn−1)

f2→ H1
m(Nn/Nn−1).

From the exact sequence

0 → im(f1) → H1
m(Nn−1) → im(f1) → 0,

it follows that

dim(R/AnnR(H
1
m(Nn)) ≤ 1.

Let J := AnnR(H
1
m(Nn)). Then for each q ∈ AttR(H

1
m(Nn)) we have q ∈ V (J)

and so dim(R/ q) ≤ 1. This completes the inductive step. �

Corollary 3.5. Let (R,m) be a local Noetherian ring of dimension 2 such that

R is a homomorphic image of a Cohen-Macaulay local ring. Then there exists

a maximal Cohen-Macaulay R-module.

Proof. Let p ∈ AsshR(R). Then using [3, Theorem 4.2.1] and Proposition
3.4 it follows that the R-module H1

m(R/p) is finitely generated. Therefore the
assertion follows from Theorem 3.2. �

Corollary 3.6. Let (R,m) be a local Noetherian domain of dimension 2. Then
the following conditions are equivalent:

(i) The R-module H1
m(R) is finitely generated.

(ii) There exists a maximal Cohen-Macaulay R-module.
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(iii) The R-module M = I is maximal Cohen-Macaulay for some ideals I of

R with ara(I) = 1.

Proof. Since R is a domain it follows that AsshR(R) = {0}. Now the assertion
follows from Theorem 3.2. �

Remark 3.7. There exists a two-dimensional Noetherian local domain (R,m)
which does not have a maximal Cohen-Macaulay module (see [6, §1] and [5]).
Obviously, R is a catenary domain and by Corollary 3.5 R is not a homomorphic
image of a Cohen-Macaulay local ring. This shows that in general an arbitrary
catenary Noetherian local domain is not a homomorphic image of a Cohen-
Macaulay local ring.

The following result, which is the second main result of this section, shows
that over an arbitrary Noetherian local ring of dimension 2 there exists a min-
imax balanced big Cohen-Macaulay module. Recall that, a module is called
minimax module, when it has a finitely generated submodule, such that the
quotient by it is an Artinian module [12].

Theorem 3.8. Let (R,m) be a local Noetherian ring of dimension 2 and I be

an ideal of R such that dim(R/I) = 2 and AssR(R/I) = AsshR(R/I). Then

there exists a minimax balanced big Cohen-Macaulay R-module M such that

AnnR(M) = I.

Proof. In view of [3, Theorem 2.2.4], there is an exact sequence

0 → R/I → Dm(R/I) → H1
m(R/I) → 0,

which implies that the R-module Dm(R/I) is minimax. Let M := Dm(R/I).
Then it is easy to see that AnnR(M) = I. By method used in the proof
of Theorem 3.2 we can deduce that H0

m(M) = 0 = H1
m(M). Also it follows

from [3, Theorem 6.1.2] that H2
m(M) ∼= H2

m(R/I). So by [3, Theorem 7.3.2] we
have H2

m(M) 6= 0. By [3, Exercise 6.1.9] we have H2
m(M) ∼= H2

m(R)⊗R M. Since
H2

m(R) can be viewed as the direct limit of its finitely generated submodules and
the functor −⊗RM commutes with direct limits, it follows from the hypothesis
H2

m(R) ⊗R M 6= 0 that H2
m(R) has a finitely generated non-zero submodule A

such that A⊗RM 6= 0. Since the R-module A is Artinian and finitely generated
it follows that A has finite length. Therefore, there is a positive integer n such
that mn A = 0. Hence there exists an exact sequence ⊕t

i=1R/mn → A → 0 for
some positive integer t. Now the exact sequence

⊕t
i=1M/mn M → A⊗R M → 0

implies that M/mn M 6= 0. Whence, it follows that mM 6= M . On the other
hand, we have AssR(R/I) ⊆ AssR(M) ⊆ AssR(R/I) ∪ AssR(H

1
m(R/I)) and

Γm(M) = 0 which implies m 6∈ AssR(M). But AssR(H
1
m(R/I)) ⊆ {m}. Thus

we have

AssR(M) = AssR(R/I) = AsshR(R/I) ⊆ AsshR(R).
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So AssR(M) ⊆ AsshR(R). Next, let x1, x2 be an arbitrary system of param-
eters for R. Then as x1 6∈ p for each p ∈ AsshR(R) it follows from the fact
AssR(M) ⊆ AsshR(R) that x1 is a non-zerodivisor on M . The exact sequence

0 → M
x1→ M → M/x1M → 0

induces the following exact sequence:

0 = H0
m(M) → H0

m(M/x1M) → H1
m(M) = 0,

which implies that H0
m(M/x1M). Therefore, m 6∈ AssR(M/x1M). Since

dimR/x1R = 1, this implies that AssR(M/x1M) ⊆ AsshR(R/x1R). There-
fore, x2 is a non-zerodivisor on M/x1M . Since (x1, x2)M ⊆ mM 6= M , it
follows from the definition that x1, x2 is an M -regular sequence and so M is a
minimax balanced big Cohen-Macaulay R-module with AnnR(M) = I. �

Corollary 3.9. Let (R,m) be a local Noetherian ring of dimension 2. Then

for each p ∈ AsshR(R), there exists a minimax balanced big Cohen-Macaulay

R-module M such that AnnR(M) = p.

Proof. As Ass(R/ p) = Assh(R/ p) and dim(R/ p) = 2 by Theorem 3.8 the
assertion holds with M := Dm(R/ p). �

The following result verifies the existence of the maximal Cohen-Macaulay
modules with certain annihilators.

Theorem 3.10. Let (R,m) be a local Noetherian ring of dimension 2 which is

a homomorphic image of a Gorenstein local ring. Let I be an ideal of R such

that dim(R/I) = 2. Then the following conditions are equivalent:
(i) AssR(R/I) = AsshR(R/I).
(ii) There exists a Maximal Cohen-Macaulay R-module M such that

AnnR(M) = I.

Proof. (i)⇒(ii) In view of Theorem 3.8 the R-module M := Dm(R/I) is bal-
anced big Cohen-Macaulay and AnnR(M) = I. So it is enough to prove that
M is finitely generated. To do this considering the exact sequence

0 → R/I → Dm(R/I) → H1
m(R/I) → 0,

it is enough to prove that the R-module H1
m(R/I) is finitely generated. In view

of [3, Corollary 7.2.12] we must show that AttR(H
1
m(R/I)) ⊆ {m}. Suppose

that the contrary is true. Then there is p ∈ AttR(H
1
m(R/I)) such that p 6= m.

Then by [3, Corollary 11.3.5] we have dim(R/ p) = 1. So it follows from [3,
Theorem 11.3.2] that p ∈ AssR(R/I). Therefore, AssR(R/I) 6= AsshR(R/I),
which is a contradiction.

(i)⇒(ii) As AnnR(M) = I and M is finitely generated it follows that there
is an exact sequence

0 → R/I → ⊕n
i=1M

for some positive integer n. Therefore, AssR(R/I) ⊆ AssR(M) ⊆ AsshR(R).
Now it is easy to see that AssR(R/I) = AsshR(R/I). �
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Corollary 3.11. Let (R,m) be an analytically irreducible local ring of dimen-

sion 2. Then there exists a maximal Cohen-Macaulay R-module.

Proof. Since by definition R̂ is a domain it follows that R is a domain. In view

of Cohen’s structure theorem R̂ is a homomorphic image of a regular local ring.

Since R̂ is a domain it follows from Corollary 3.5 and Corollary 3.6 that the

R̂-module H1
m R̂

(R̂) is finitely generated. Since the R̂-module

H1
m(R)

∼= H1
m(R)⊗R R̂ ∼= H1

m R̂
(R̂)

has finite length as an R̂-module, it follows that this R-module has finite length.
Now the assertion follows from Corollary 3.6. �
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