Browse > Article
http://dx.doi.org/10.4134/BKMS.2014.51.2.373

COHEN-MACAULAY MODULES OVER NOETHERIAN LOCAL RINGS  

Bahmanpour, Kamal (Faculty of Mathematical Sciences Department of Mathematics University of Mohaghegh Ardabili, School of Mathematics Institute for Research in Fundamental Sciences (IPM))
Publication Information
Bulletin of the Korean Mathematical Society / v.51, no.2, 2014 , pp. 373-386 More about this Journal
Abstract
Let (R,m) be a commutative Noetherian local ring. In this paper we show that a finitely generated R-module M of dimension d is Cohen-Macaulay if and only if there exists a proper ideal I of R such that depth($M/I^nM$) = d for $n{\gg}0$. Also we show that, if dim(R) = d and $I_1{\subset}\;{\cdots}\;{\subset}I_n$ is a chain of ideals of R such that $R/I_k$ is maximal Cohen-Macaulay for all k, then $n{\leq}{\ell}_R(R/(a_1,{\ldots},a_d)R)$ for every system of parameters $a1,{\ldots},a_d$ of R. Also, in the case where dim(R) = 2, we prove that the ideal transform $D_m(R/p)$ is minimax balanced big Cohen-Macaulay, for every $p{\in}Assh_R$(R), and we give some equivalent conditions for this ideal transform being maximal Cohen-Macaulay.
Keywords
balanced big Cohen-Macaulay modules; Cohen-Macaulay modules; local cohomology modules; quasi regular sequences;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Cherrabi, Quasi-regular sequences and regular sequences, Comm. Algebra 39 (2011), no. 1, 184-188.
2 M. Brodmann, Asymptotic stability of Ass(M/InM), Proc. Amer.Math. Soc. 74 (1979), no. 1, 16-18.
3 M. P. Brodmann and R. Y. Sharp, Local Cohomology: an algebraic introduction with geometic applications, Cambridge University Press, Cambridge, 1998.
4 D. Ferrand and M. Rayanaud, Fibres formelles d'un anneau local Noetherien, Ann. Sci. Ecole Norm. Sup. 3 (1970), 295-311.   DOI
5 M. Hochster, Cohen-Macaulay modules, Conference on Commutative Algebra (Univ. Kansas, Lawrence, Kan., 1972), pp. 120-152. Lecture Notes in Math., Vol. 311, Springer, Berlin, 1973.
6 M. Hochster, Topics in the homological theory of modules over commutative rings, C.B.M.S. Regional Conference Series in Mathematics No. 24, Providence, R.I.: AMS, 1975.
7 M. Hochster, Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors, Conference on Commutative Algebra975 (Queen's Univ., Kingston, Ont., 1975), pp. 106-195. Queen's Papers on Pure and Applied Math., No. 42, Queen's Univ., Kingston, Ont., 1975.
8 H. Zoschinger, Minimax modules, J. Algebra 102 (1986), no. 1, 1-32.   DOI
9 H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, Cambridge, UK, 1986.
10 L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 267-271.   DOI
11 L. J. Ratliff, Jr., On the prime divisors of $I^n$, n large, Michigan Math. J. 23 (1976), 337-352.   DOI
12 M. Brodmann, The asymptotic nature of the analytic spread, Math. Proc. Cambridge Philos. Soc. 86 (1979), no. 1, 35-39.   DOI