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SOME RESULTS ON INTEGER-VALUED POLYNOMIALS

OVER MODULES

Ali Reza Naghipour and Javad Sedighi Hafshejani

Abstract. Let M be a module over a commutative ring R. In this paper,

we study Int(R,M), the module of integer-valued polynomials on M over
R, and IntM (R), the ring of integer-valued polynomials on R over M . We

establish some properties of Krull dimensions of Int(R,M) and IntM (R).
We also determine when Int(R,M) and IntM (R) are nontrivial. Among

the other results, it is shown that Int(Z,M) is not Noetherian module

over IntM (Z) ∩ Int(Z), where M is a finitely generated Z-module.

1. Introduction

Let D be a commutative integral domain with field of fractions K. The ring
of integer-valued polynomials on D is defined by

Int(D) = {f ∈ K[X] | f(D) ⊆ D}.
The first systematic studies of the algebraic properties of Int(D) were done

by Pólya [21] and Ostrowski [18] in 1919. Both Pólya and Ostrowski were
primarily concerned with the module structure of Int(D), and were interested
in determining whether Int(D) had a regular basis. There is an extensive
literature on Int(D), see for example [3, 4, 22]. The reader is referred to the
textbooks [1] and [16] for a general introduction to integer-valued polynomials.

More recently, attention has turned to the consideration of integer-valued
polynomials on algebras. See for example [7, 8, 15, 19, 20, 25]. The typical
approach for this construction is to take a torsion-free D-algebra A that is
finitely generated as a D-module and such that A ∩K = D. We also refer the
reader to the survey papers [6] and [27].

Throughout the paper, R is a commutative ring with identity and M is a
unitary R-module. The set of all zero-divisors of M denoted by ZR(M). The
set of all non zero-divisors on M denoted by U (that is U := R\ZR(M)). Let N
be a submodule of M . The colon ideal (N :R M) is the set of all elements r in R
such that rM ⊆ N . The annihilator of M , denoted by AnnR(M), is (0 :R M).
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If there is no ambiguity, we simply write Z(M), (N : M) and Ann(M) instead
of ZR(M), (N :R M) and AnnR(M), respectively. The module M is called
faithful if Ann(M) = 0. For each x ∈ M , the annihilator of Rx, is denoted by
Ann(x),

The total quotient T (M) of M is the localization U−1M (see for example
[24]). Note that the canonical R-module mapping M −→ T (M) is an inclusion
and we consider M as an R-submodule of T (M).

Suppose that X is an indeterminate that commutes with the elements of M
and R. Let M [X] denote the set of formal polynomials of the form

∑n
i=1miX

i,
where mi ∈ M (for polynomials with central variable over a noncommutaive
ring, see for example [9]). Obviously, M [X] is an Abelian group under usual
addition. Moreover, M [X] is naturally an R[X]-module under the R[X]-scalar
multiplication defined by

(

m∑
i=1

aiX
i)(

n∑
j=1

mjX
j) =

m+n∑
k=0

(
∑
i+j=k

aimj)X
k.

For a polynomial f(X) =
∑n
i=1miX

i ∈ M [X] the value of f at the element
a ∈ R is defined by f(a) =

∑n
i=1mia

i ∈ M . Recently, Elliott [5] studied the
integer-valued polynomials on commutative rings and modules. Elliott defined
the ring of integer-valued polynomials on R as follows:

Int(R) = {f ∈ T (R)[X] | f(R) ⊆ R}.
He defined the module of integer-valued polynomials on M over R as follows:

Int(R,M) = {f ∈ T (M)[X] | f(R) ⊆M}.
Elliott also defined the ring of integer-valued polynomials on R over M as
follows:

IntM (R) = {f ∈ U−1R[X] | f(R)M ⊆M}.
Note that

M [X] ⊆ Int(R,M) ⊆ T (M)[X],

and

(R.1)[X] ⊆ IntM (R) ⊆ U−1R[X],

where R.1 is the image of R in U−1R. It is easy to see that IntM (R) is a
ring and Int(R,M) is an IntM (R)-module. We say that Int(R,M) (respec-
tively, IntM (R)) is nontrivial if Int(R,M) 6= M [X] (respectively, IntM (R) 6=
(R.1)[X]).

This paper consists of two sections. In Section 2, we prove some prelim-
inary facts about Int(R,M). In particular, we determine when Int(R,M)
is nontrivial (see Theorem 2.5). We also give some properties of Krull di-
mension of Int(R,M) (see Corollary 2.7). In Section 3, we prove some basic
results of IntM (R). In particular, we show that IntM (R) is not Noetherian
IntM (Z) ∩ Int(Z)-module, where M is a finitely generated Z-module (see The-
orem 3.2(1)). We also give some properties of Krull dimension of IntM (R)
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(see Theorem 3.4 and Corollary 3.5). Finally, we determine when IntM (R) is
nontrivial (see Theorem 3.6).

2. Properties of Int(R,M)

We begin with the following theorem.

Theorem 2.1. Let Mi, 1 ≤ i ≤ n be R-modules with the same zero-divisors.
Then there is an R-module isomorphism

Int(R,

n⊕
i=1

Mi) ∼=R

n⊕
i=1

Int(R,Mi).

Proof. Let U =: R \ ZR(
⊕n

i=1Mi) = R \ ZR(Mi). We define:

φ : Int(R,

n⊕
i=1

Mi) −→
n⊕
i=1

Int(R,Mi)

p∑
k=0

Ak
sk
Xk 7→ (

p∑
k=0

ak1
sk

Xk, . . . ,

p∑
k=0

akn
sk

Xk),

where Ak = (ak1, . . . , akn) ∈
⊕n

i=1Mi and sk ∈ U for each 0 ≤ k ≤ p. First

we show φ is well-defined. Let f =
∑p
k=0

Ak

sk
Xk ∈ Int(R,

⊕n
i=1Mi). It is easy

to see that φ(f) = (
∑p
k=0

ak1

sk
Xk, . . . ,

∑p
k=0

akn

sk
Xk) ∈

⊕n
i=1 Int(R,Mi). Now

let g =
∑q
k=0

Bk

tk
Xk be another element of

⊕n
i=1 Int(R,Mi) such that f = g.

So p = q and Ak

sk
= Bk

tk
for all 0 ≤ k ≤ p. Therefore there is a u ∈ U such

that u(tkAk − skBk) = 0 for all 0 ≤ k ≤ p. It follows that u(tkaki − skbki) = 0
for all 0 ≤ k ≤ p, 1 ≤ i ≤ n and hence φ(f) = φ(g). So φ is well-defined.
It is easy to see that φ is a homomorphism of R-modules. Now we show φ is
injective. Let f be an element of

∑p
k=0

Ak

sk
Xk ∈ Int(R,

⊕n
i=1Mi) such that

φ(f) = 0. Then (
∑p
k=0

ak1

sk
Xk, . . . ,

∑p
k=0

akn

sk
Xk) = 0. So there is a uki ∈ U

such that ukiaki = 0, where 0 ≤ k ≤ p and 1 ≤ i ≤ n. If uk =
∏
i uki, then

ukAk = 0 for all 0 ≤ k ≤ p and hence f = 0. It follows that φ is injective. Let
f = (

∑p
k=0

ak1

sk
Xk, . . . ,

∑p
k=0

akn

sk
Xk) ∈

⊕n
i=1 Int(R,Mi). Let 0 ≤ α ≤ p and

set
ŝα :=

∏
i 6=α

si, and u :=
∏
i

si.

We have

(

p∑
k=0

ak1
sk

Xk, . . . ,

p∑
k=0

akn
sk

Xk) = (

p∑
k=0

ŝkak1
ŝksk

Xk, . . . ,

p∑
k=0

ŝkakn
ŝksk

Xk)

= (

p∑
k=0

ŝkak1
u

Xk, . . . ,

p∑
k=0

ŝkakn
u

Xk).

So φ(
∑ Bk

u X
k) = f , where Bk = (ŝkak1, . . . , ŝkakn). It follows that φ is

surjective. Hence φ is an isomorphism and the proof is complete. �
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Lemma 2.2. Let M and N be two isomorphic Abelian groups. If M is an
R-module, then N is also an R-module and M ∼= N as R-modules.

Proof. Let φ : M −→ N be a Z-module isomorphism. We define a scalar
multiplication as follows:

µ : R×N −→ N

(r, n) 7→ φ(rφ−1(n))

Then N is an R-module with this scalar multiplication and it is easy to see
that φ : M −→ N is an R-module isomorphism. �

Theorem 2.3. Let M be an R-module and I be an ideal of R such that I ⊆
Ann(M). Then

(1) Int(R,M) ∼=R Int(R/I,M),
(2) Int(R,M) ∼=IntM (R) Int(R/I,M).

Proof. (1) For convenience, let the element r + I of R/I be denoted by r. We
define

φ : Int(R,M) −→ Int(R/I,M)
p∑
k=0

ak
sk
Xk 7→

p∑
k=0

ak
sk
Xk.

It is easy to see that φ is an R-module isomorphism.
(2) Immediately follows from Part (1) and Lemma 2.2. �

Let M be an R-module and f ∈ M [X] and S be a multiplicative subset of
R. Then S−1〈f(R)〉 is the localization of the R-module generated by the value
of f on R and 〈f(S−1R)〉 is the S−1R-module generated by the value of f on
S−1R.

In following theorem, we generalize [1, Propositions I.2.5, I.2.7(ii)].

Theorem 2.4. Let M be an R-module and f ∈M [X] and S be a multiplicative
subset of R. Then

(1) S−1 Int(R,M) ⊆ Int(S−1R,S−1M),
(2) If R is Noetherian, then S−1 Int(R,M) = Int(S−1R,S−1M).

Proof. (1) In view of [1, Theorem I.2.10], we have 〈f(S−1R)〉 = S−1〈f(R)〉 ⊆
S−1M . It follows that S−1 Int(R,M) ⊆ Int(S−1R,S−1M).

(2) In view of the part (1), it is enough to show that Int(S−1R,S−1M) ⊆
S−1 Int(R,M). Let f ∈ Int(S−1R,S−1M). Then 〈f(R)〉 ⊆ S−1M ∩ C(f),
where C(f), the content of f , is the R-module generated by the coefficients of f .
Since R is a Noetherian ring, S−1M∩C(f) is a Noetherian R-module and hence
〈f(R)〉 is a finitely generated R-module. If s ∈ S is a common denominator of
the generators of 〈f(R)〉, then s〈f(R)〉 ⊆ M . Therefore sf ∈ Int(R,M) and
hence f ∈ S−1 Int(R,M). �



SOME RESULTS ON INTEGER-VALUED POLYNOMIALS OVER MODULES 1169

Let M be an R-module. Recall that the set of associated primes of M ,
denoted by AssR(M), is the set of prime ideals p such that p = Ann(x) for
some x ∈ M . If p is a minimal prime ideal over Ann(x) for some x ∈ M ,
then p is called a weakly associated prime of M . Sometimes p is called a weak
Bourbaki prime of M . The set of weakly associated primes of M is denoted
by As̃sR(M). If there is no ambiguity, we simply write Ass(M) and As̃s(M)
instead of AssR(M) and As̃sR(M), respectively.

Theorem 2.5. Let M be an R-module. If Int(R,M) 6= M [X], then there
exists p ∈ As̃s(T (M)/M) such that R/p is finite. The converse is true when p
is finitely generated.

Proof. Let p ∈ As̃s(T (M)/M) be such that R/p is infinite. We claim that
Int(R,M) ⊆ Mp[X]. Let f be a polynomial of degree n in Int(R,M) and let
d =

∏
0≤i<j≤n(aj − ai), where a0, . . . , an be n+ 1 elements in distinct classes

modulo p; in particular, d 6∈ p. In view of [1, Proposition I.3.18], we have
df ∈M [X] and hence Int(R,M) ⊆Mp[X]. Now suppose that every element of
As̃s(T (M)/M) has infinite residue field and there is a polynomial f ∈ Int(R,M)
with some coefficient x ∈ T (M) \M . Then there is a p ∈ As̃s(T (M)/M) such
that Ann(x) ⊆ p, where x is the residue of x in the quotient module T (M)/M .
Since Int(R,M) ⊆Mp[X], there is s ∈ R \ p such that sx ∈M . It follows that
sx = 0 in T (M)/M and so s ∈ Ann(x) ⊆ p, which is a contradiction.

Conversely, suppose that p is finitely generated. By [28, Lemma 1.8], p ∈
Ass(T (M)/M). Therefore there exists a nonzero element x ∈ T (M)/M such
that p = Ann(x). Let {a0, a1, . . . , an} be a set of representatives modulo p.
Then the polynomial f = x

∏
0≤i≤n(X − ai) is a polynomial in Int(R,M) and

its leading coefficient is not in M . �

A proper submodule P of M is called a prime submodule of M if for any x
of M and element r of R, rx ∈ P implies x ∈ P or rM ⊆ P . A module M is
called a prime module if its zero submodule is a prime submodule. This notion
of prime submodule was first introduced and systematically studied in Dauns
[2]. The reader is referred to [10] and [12] for more information about prime
submodules.

Notation 1. Let M be an R-module and a ∈ R and N be a submodule of M .
We set:

SN,a = {f ∈ Int(R,M) | f(a) ∈ N}.

Theorem 2.6. Let M be an R-module and a ∈ R. Then

(1) If N is a submodule of M , then SN,a is a submodule of Int(R,M),
(2) If P is a prime submodule of M , then SP,a is a prime submodule of

Int(R,M).

Proof. (1) Obvious.
(2) Let P be a prime submodule of M . It is easy to see that SP,a is a

proper submodule of Int(R,M). Now let r ∈ R and f ∈ Int(R,M) such that
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rf ∈ SP,a. Suppose that f 6∈ SP,a. Since rf(a) ∈ P , we have rM ⊆ P . Hence
rg(a) ∈ P for every g ∈ Int(R,M). It follows that r Int(R,M) ⊆ SP,a. This
completes the proof. �

The Krull dimension of a ring R, denoted by dimR, is the maximal length
n of a chain p0 ⊂ p1 ⊂ · · · ⊂ pn of prime ideals of R. Similarly, the Krull
dimension of an R-module M , denoted by dimM , is the maximal length n of
a chain P0 ⊂ P1 ⊂ · · · ⊂ Pn of prime submodules of M (see for example [10]).

Corollary 2.7. Let M be an R-module. Then

(1) dim Int(R,M) ≥ dimM ,
(2) If M is a prime R-module, then dim Int(R,M) ≥ dimM + 1.

Proof. (1) Let P0 ⊂ P1 ⊂ · · · ⊂ Pn be a chain of prime submodules of M and
let a ∈ R. If mi ∈ Pi \ Pi−1, then the constant polynomial f(X) = mi is
in SPi,a \ SPi−1,a. Therefore SP0,a ⊂ SP1,a ⊂ · · · ⊂ SPn,a is a chain of prime
submodules of Int(R,M). So dim Int(R,M) ≥ dimM .

(2) Let M be a prime R-module and let (0) = P0 ⊂ P1 ⊂ · · · ⊂ Pn be a chain
of prime submodules of M . Let a ∈ R. Then mX −ma is a nonzero element
of SP0,a for every nonzero element m ∈ M . Now we show that Int(R,M) is a

prime R-module. Let r ∈ R and f(X) =
∑k
i=0

mi

si
Xi ∈ Int(R,M) such that

rf(X) = 0. Suppose that f(X) 6= 0 so we may assume mk

sk
6= 0. Since rf = 0,

there exists u ∈ R \ Z(M) such that rumk = 0. Since umk 6= 0 and M is a
prime R-module, we have rM = 0. It follows that r Int(R,M) = 0 and hence
Int(R,M) is a prime R-module. So the assertion follows from Part (1). �

An R-module M is said to be polynomially torsion-free, in short a PF R-
module, if f(R) = (0) implies f = 0 for all f ∈M [X] (see [1, Definition I.4.1]).
We recall that an R-module M is called torsion-free if every zero-divisor on M
is a zero-divisor on R (see for example [9, Page 44]).

Theorem 2.8. Let M be a module over a Noetherian ring R. Then

(1) If M is torsion-free and R is PF, then M is PF,
(2) If M is finitely generated and PF, then R is PF.

Proof. (1) It follows from the definition that Z(M) ⊆ Z(R). Suppose on
the contrary that M is not PF. By [1, Exercise 25], there exist a positive
integer n and a nonzero x ∈ M such that g(Rn+1) ⊆ Ann(x), where g =∏

0≤i≤j≤n(Xj −Xi). So 〈g(Rn+1)〉 ⊆ Ann(x) ⊆ Z(R). By [26, Corollary 9.36]

and [11, Theorem 6.5(1)], Z(R) is the finite union of the associated primes in
Ass(R). Hence by the Prime Avoidance Theorem [26, Theorem 3.61], we have
〈g(Rn+1)〉 ⊆ p for some p ∈ Ass(R). Therefore there exists a nonzero element
r ∈ R such that g(Rn+1) ⊆ Ann(r). It follows from [1, Exercise 25] that R is
not PF, which is a contradiction.

(2) Without loss of generality, we may assume Ann(M) = 0 (i.e., M is
faithful). First we show that Z(R) ⊆ Z(M). Let a be a nonzero element of
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Z(R). So there exists a nonzero element b ∈ R such that ab = 0. Since b is
nonzero, bM 6= 0 and hence there exits a nonzero x ∈ M such that bx 6= 0.
We have a ∈ Ann(bx) ⊆ Z(M). Hence Z(R) ⊆ Z(M). Now suppose on the
contrary that R is not PF. By [1, Exercise 25], there exist a positive integer n
and a nonzero r ∈ M such that g(Rn+1) ⊆ Ann(r). Again, by [26, Corollary
9.36] and [11, Theorem 6.5(1)], Z(M) is the finite union of associated primes in
Ass(R). Hence by the Prime Avoidance Theorem [26, Theorem 3.61], we have
g(Rn+1) ⊆ p for some p ∈ Ass(M). Therefore there exists a nonzero x ∈ M
such that g(Rn+1) ⊆ Ann(x). It follows from [1, Exercise 25] that M is not
PF, which is a contradiction. �

From the above theorem, we have immediate important corollary:

Corollary 2.9. Let M be a finitely generated torsion-free module over a Noe-
therian ring R. Then M is PF if and only if R if PF.

We close this section by the following theorem.

Theorem 2.10. Let M be a module over a Noetherian ring R. Then the
following statements are equivalent:

(1) Int(R,M) = M [X],
(2) T (M)/M is a PF R-module,
(3) R/p is infinite for every associated prime p of T (M)/M .

Proof. (1)⇒(2): Let f =
∑n
i=1(mi

si
+M)Xi be an element of T (M)/M [X] such

that f(R) = 0. If f :=
∑n
i=1

mi

si
Xi, then f(R) ⊆ M and hence f ∈ M [X]. It

follows that f = 0.
(2)⇒(1): Let f ∈ Int(R,M). If f is the image of f in T (M)/M , then

f(R) = 0 in T (M)/M , since f(R) ⊆M . So f = 0 and hence f ∈M [X].
(2)⇒ (3): The assertion follows from [1, Proposition I.4.10]. �

3. Properties of IntM(R)

We begin this section by the following theorem.

Theorem 3.1. Let {Mi : i ∈ Λ} be an indexed family of R-modules with the
same zero-divisors. Then

Int∑
iMi

(R) ∼=R

⋂
i

IntMi
(R).

Proof. Obvious. �

Theorem 3.2. Let M be a finitely generated Z-module. Then

(1) IntM (Z) is not a Noetherian IntM (Z) ∩ Int(Z)-module,
(2) If M is a faithful Z-module, then Int(Z,M) is not a Noetherian IntM (Z)
∩ Int(Z)-module.
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Proof. (1) Since M is a finitely generated Z-module, [11, Theorem 6.5(1)]
implies that Ass(M) is finite. Let Ass(M) = {p1, . . . , pn}. We claim that
Z(M) contains at most n prime numbers. Suppose on the contrary that
{q1, q2, . . . , qn+1} ⊆ Z(M), where the qi (1 ≤ i ≤ n + 1) are distinct prime
numbers. Therefore, there are distinct numbers i, j and pk ∈ Ass(M) such that
qi, qj ∈ pk. Hence 1 ∈ pk, which is a contradiction. Now let {p1, p2, . . . , pn, . . .}
⊆ Z \ Z(M) be an infinite set of prime numbers. For each i ≥ 1, let fi(X) =
Xpi−X
pi

. For each n ≥ 1, let In be the ideal of IntM (Z) ∩ Int(Z) generated by

{f1, . . . , fn} (note that fi ∈ IntM (Z) because pi ∈ Z \ Z(M) and fi ∈ Int(Z)).
We claim that fn+1 6∈ In for each n ≥ 1. Suppose on the contrary that
fn+1 ∈ In for some n. Then, there exist g1, . . . , gn ∈ IntM (Z) ∩ Int(Z) such
that

fn+1 = g1f1 + · · ·+ gnfn.

By equating the coefficients of −X, we have

1

pn+1
=
g1(0)

p1
+ · · ·+ gn(0)

pn
,

which is a contradiction since gi(0) ∈ Z and p1, . . . , pn+1 are all distinct prime
numbers.

(2) As in Part (1), let {p1, p2, . . . , pn, . . .} ⊆ Z \ Z(M) be an infinite set of

prime numbers. Let M = Zm1 + · · · + Zmk and let fij(X) = Xpi−X
pi

mj ∈
Int(Z,M), where 1 ≤ j ≤ k. For each n ≥ 1, let Inj be the IntM (Z) ∩
Int(Z)-submodule of Int(Z,M) generated by {f1j , . . . , fnj}. We claim that
f(n+1)j 6∈ Inj for each n ≥ 1. Suppose on the contrary that f(n+1)j ∈ Inj for
some n. Then there exist g1j , . . . , gnj ∈ IntM (Z) ∩ Int(Z) such that f(n+1)j =

g1jf1j + · · · + gnjfnj . By equating the coefficients of −X, we have 1
pn+1

mj =

g1j(0)
p1

mj + · · · + gnj(0)
pn

mj . So
(

1
pn+1

−
(
g1j(0)
p1

+ · · ·+ gnj(0)
pn

))
mj = 0. Since

M is a faithful R-module, we have

k∏
j=1

(
1

pn+1
−
(
g1j(0)

p1
+ · · ·+ gnj(0)

pn

))
= 0.

So there is 1 ≤ t ≤ k such that
(

1
pn+1

−
(
g1t(0)
p1

+ · · ·+ gnt(0)
pn

))
= 0, which is

a contradiction by the fact that git(0) ∈ Z. �

Notation 2. Let M be an R-module and a ∈ R and N be a submodule of M .
We set:

IN,a = {f ∈ IntM (R) | f(a)M ⊆ N}.

Theorem 3.3. Let M be an R-module and a ∈ R. Then

(1) If N is a submodule of M , then IN,a is an ideal of IntM (R),
(2) If P is a prime submodule of M such that (P : M) ⊆ Z(M), then IP,a

is a prime ideal of IntM (R).
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Proof. (1) Obvious.
(2) Let P be a prime submodule of M . It is easy to see that IP,a is a

proper ideal of IntM (R). Now let f, g ∈ IntM (R) such that fg ∈ IP,a. Suppose
that g(a)M 6⊆ P . So there exists m0 ∈ g(a)M \ P (note that m0 ∈ M). Let
U = R \ Z(M) and let f(a) = b

s for some b ∈ R and s ∈ U . Since b
sm0 ∈ P ,

we have bm0 ∈ P and hence bM ⊆ P . Now let m be an arbitrary element of

M . Since b
sM ⊆ M , there exists m′ ∈ M such that b

sm = m′

1 . It follows that

sm′ = bm ∈ P . Since s 6∈ (P : M), we must have m′ ∈ P and hence b
sM ⊆ P .

It follows that f ∈ IP,a. This completes the proof. �

Let M be an R-module. A proper submodule P of M is called a strongly
prime submodule if (P +Rx : M)y ⊆ P for x, y ∈M , implies that either x ∈ P
or y ∈ P . The collection of all strongly prime submodules of M is called the
strongly spectrum of M and is denoted by S.Spec(M). The strong dimension
of M (s.dimR(M)) in terms of ascending chains of strongly prime submodules
as follow:

s.dimR(M) = sup{n | ∃P0, P1, . . . , Pn ∈ S.Spec(M) such that

P0 ⊂ P1 ⊂ · · · ⊂ Pn}.

For more information about strongly prime submodules, we refer the reader to
[13] and [23].

Theorem 3.4. Let M be a nonzero R-module. Then

(1) dim IntM (R) ≥ s.dimU−1R U
−1M ,

(2) If M is a prime R-module, then dim IntM (R) ≥ s.dimU−1R U
−1M + 1.

Proof. (1) Let

Q0 ⊂ Q1 ⊂ · · · ⊂ Qn
be a chain of strongly prime submodules of U−1M . Then by [14, Proposition
2.5], there exist strongly prime submodules P0, . . . , Pn of M such that U−1Pi =
Qi and (Pi : M) ⊆ Z(M) for all i = 0, 1, . . . , n. By Theorem 3.3(2), IPi,a is
a prime ideal for all i = 0, . . . , n. Let 1 ≤ i ≤ n. It is easy to see that
Pi−1 ⊂ Pi and so [14, Lemma 3.1] implies that, (Pi−1 : M) ⊂ (Pi : M). Let
ai ∈ (Pi : M) \ (Pi−1 : M), then the constant polynomial f(X) = ai is in
IPi,a \ IPi−1,a. Therefore IP0,a ⊂ IP1,a ⊂ · · · ⊂ IPn,a is a chain of prime ideals
of IntM (R). So dim IntM (R) ≥ s.dimU−1R U

−1M .
(2) Without loss of generality, we may assume that M is a faithful R-module.

Let M be a prime R-module and let (0) = P0 ⊂ P1 ⊂ · · · ⊂ Pn be a chain of
prime submodules of M . Let a ∈ R. Then X−a is a nonzero element of IP0,a.
Now we show that IntM (R) is an integral domain. Suppose on the contrary
that IntM (R) is not an integral domain. So there are nonzero polynomials
f(X) =

∑p
i=0

ai
si
Xi and g(X) =

∑q
i=0

bi
ti
Xi in IntM (R) such that fg = 0. We

may assume
ap
sp
6= 0 and

bq
tq
6= 0. Since

ap
sp

bq
tq

= 0, there exists u ∈ R \ Z(M)

such that uapbq = 0. Since M is a nonzero faithful module, we have ap = 0
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or bq = 0, which is a contradiction. So IntM (R) is an integral domain and the
assertion follows from Part (1). �

The classical Krull dimension of an R-module M is defined as the Krull
dimension of the ring R/Ann(M) and denoted by cl.K.dimR(M) (see [17]).
We close this paper by the following corollary.

Corollary 3.5. Let M be a nonzero finitely generated R-module. Then

(1) dim IntM (R) ≥ dim U−1R
AnnU−1R(U−1M) ,

(2) If M is a prime R-module, then dim IntM (R) ≥ dim U−1R
AnnU−1R(U−1M) +

1.

Proof. (1) SinceM is a finitely generatedR-module, U−1M is finitely generated
over U−1R. So by [14, Theorem 3.3(2)] and Theorem 3.5(1), we have

dim IntM (R) ≥ s.dimU−1R U
−1M = cl.K.dimU−1R(U−1M)

= dim
U−1R

AnnU−1R(U−1M)
.

(2) Since U−1M is finitely generated over U−1R, by [14, Theorem 3.3(2)]
and Theorem 3.5(2), we have

dim IntM (R) ≥ s.dimU−1R U
−1M + 1

= cl.K.dimU−1R(U−1M) + 1

= dim
U−1R

AnnU−1R(U−1M)
+ 1.

�

We close this paper by the following theorem which is similar to Theorem
2.5. We may write a for the image of a ∈ R and identify R with its image in
U−1R under the canonical map R −→ U−1R (see for example [1, Page 9]).

Theorem 3.6. Let R be integrally closed in U−1R and M be a finitely gen-
erated R-module. Let U−1M be a faithful U−1R-module. If IntM (R) 6= R[X],
then there exists p ∈ As̃sR((U−1R)/R) such that R/p is finite. The converse
is true when p is finitely generated.

Proof. Suppose that every element of As̃sR((U−1R)/R) has an infinite residue
field. We claim that IntM (R) ⊆ Rp[X] for all p ∈ As̃sR((U−1R)/R). Let
f ∈ IntM (R), r ∈ R and t := f(r). Since tM ⊆ M , an argument similar to
that of [26, Proposition 13.15] (determinant trick) shows that

tn + a1t
n−1 + · · ·+ an−1t+ an ∈ (0 :U−1R M),

where ai ∈ R for i = 1, 2, . . . , n. It is easy to see that (0 :U−1R M) = (0 :U−1R

U−1M). Since U−1M be a faithful U−1R-module and R is integrally closed in
U−1R, we must have t ∈ R. Now assume that p ∈ As̃sR((U−1R)/R) and let
d =

∏
0≤i<j≤n(aj − ai), where a0, . . . , an be n + 1 elements in distinct classes

modulo p; in particular, d 6∈ p. In view of [1, Proposition I.3.18], we have
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df ∈ R[X] and hence IntM (R) ⊆ Rp[X]. Now let IntM (R) 6= R[X]. Then there
is a polynomial f ∈ IntM (R) with some coefficient x ∈ (U−1R) \ R. So there
is a p ∈ As̃sR((U−1R)/R) such that Ann(x) ⊆ p, where x is the residue of x
in the quotient module (U−1R)/R. Since IntM (R) ⊆ Rp[X], there is s ∈ R \ p
such that sx ∈ R. It follows that sx = 0 in (U−1R)/R and so s ∈ Ann(x) ⊆ p,
which is a contradiction.

Conversely, suppose that p is finitely generated. By [28, Lemma 1.8], p ∈
AssR((U−1R)/R). Therefore there exists a nonzero element x ∈ (U−1R)/R
such that p = Ann(x). Let {a0, a1, . . . , an} be a set of representatives modulo
p. Then the polynomial f = x

∏
0≤i≤n(X−ai) is a polynomial in IntM (R) and

its leading coefficient is not in R. �
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