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DIMENSIONS OF A POLYNOMIAL RING
AND A POWER SERIES RING OVER
A LOCALLY NOETHERIAN RING

CHUL JUu HWANG AND GYu WHAN CHANG

1. Introduction

Let R be a commutative ring with identity and let {X;} | be aset of
indeterminates over R. It is well known that if R is a Noetherian ring,
then dimR[{X,}2,] = dimR{|{X,}",|] = demR+m. In this paper, we
will show that if R is a locally Noetherian ring, then dimR[{X,}" ] =
dimR + m, but dimR[|[{X,}™,]] need not be dimR + m. Undefined
notation and terminology will be essentially that of [1].

2. Main results

Throughout this section, R denotes a commutative ring with identity
and {X,}™, is a set of indeterminates over R.

DEFINITION 1. A ring R is said to be locally Noetherian if for each
maximal ideal M of R, Ry is Noetherian.

Let R be a locally Noetherian ring. If P is a prime ideal of R, there
is a maximal ideal M of R with P C M. Since R— M C R - P,
Rp = (Rr-m)p = (Rm)p and so Rp is Noetherian. So R is locally
Noetherian if and only if Rp is Noetherian for each prime ideal P of
R.

LeEMMA 1. If R is a Noetherian ring, then dimR[{X,}2,] = dimR
[{X:} 2] = dmR +m.

Proof. Theorem 30.5 and Theorem 30.6 in [2].
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LEMMA 2. If R is a locally Noetherian ring, then the polynomial
ring R[X] is also locally Noetherian.

Proof. For a maximal ideal M of R{X], let P = M N R. Then
R{X|m = (BX)(r-p))M = (Rp[X])m. Since Rp is Noetherian,
(Rp[X])m is also Noetherian. -

For & prime ideal P of R, the supremum of the lengths, taken over all
strictly decreasing chains of prime ideals P == Py, D Py D Py--- D P,
starting from P, is called the height of P denoted by ht{P).

LEMMA 3. If R is a locally Noetherian domain,
then dimR[{X,}%,} = dmR+ m.

Proof. To avoid trivial cases, we can assume that dimR =n < co.
By Lemma 2 we can assume that m = 1. It is clear that n + 1 <
dimR[X]. To show that dimR[X] < n + 1, it is sufficient that for
a prime ideal M of R[X], hi{M) < n + 1. For a prime ideal M of
R[X],if P = M N R then ht(M) < ht(P[X]) + 1. Since R[X]pix) =
(Rp[X))prpix), PHPX]) = dim(R[X]px}) = ht(PRp[X]) < dimRp
[X] -1 = (dmRp + 1) - 1 = dimRp = ht(P) < n. Therefore,
ht(M) < ht(P[X])+1<n+1.

LEMMA 4. Let R be a ring with identity, then R is locally Noe-
therian if and only if for each nonzero ideal I of R, R/I is locally
Noetherian.

Proof. Suppose that R is locally Noetherian. Since a maximal ideal
of R/I is of the form M /I where M is a maximal ideal of R containing
I and (R/I)pyr = Rm/IRum, R/I is locally Noetherian. Conversely,
for a maximal ideal M of R, each prime ideal of Ry is PRy, where P
is a prime ideal of R contained in M. Take a nonzero element ¢ € P,
then R/aR is locally Noetherian and so (R/aR)y/.r & Rar/aRuy is
Noetherian. Hence PRpr/aRjps is finitely generated and so is PRyy.
Since PRy is an arbitrary prime ideal of Rps, by Cohen’s theorem R ¢
is Noetherian.

COROLLARY 1. Let {X,}, be a set of indeterminates over the ring

R. Then R{{X,},] is locally Noetherian if and only if R is also locally
Noetherian.
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THEOREM 1. If R is a locally Noetherian ring, then dmR[{X,}12,]
=dimR + m.

Proof. 'To avoid trivial cases, we can assume that dimR = n < co.
Since dimR[{X,}2,] > n+m, to prove the result it is enough to show
that dimR[{X,}2,] € n+m. By Lemma 2 we can assume that m = 1.
For a mininmal prime ideal My of R[X], if My N R = P then Py{X] is
a prime ideal of R[X] contained in My. Since My is a minimal prime
ideal, My = FPy{X]. Therefore R{X)/M, = (R/Fy)[X]. By Lemma 3
and Lemma 4 dim(R[X|/Mo) = dm(R/Pe)+1 < dmR+1=n+1.
So dimR[X] <n+ L.

COROLLARY 2. If R is an almost Dedekind domain,
then dmR[X] = 2.

We will give an example of an one dimensional locally Noetherian
domain over which the power series ring has an infinite dimension.

DEFINITION 2. Let I be an ideal of the ring R. We shall call I an
SFT-ideal if there exists a finitely generated ideal B C [ and a positive
integer k such that a* € B for each element a € I.

LEMMA 5. Suppose that M is a maximal ideal of a ring R such that
M is not an SFT-ideal. Then ht(M[|X]]) = oco.

Proaf. Theorem 21 in {1].

THEOREM 2. If R is an almost Dedekind domain which is not Noe-
therian (Example 42.6 in [2]), then R is an one dimensional locally
Noetherian domain and dimR[|X|] = co.

Proof. Since R is an almost Dedekind domain R is a locally Noe-
therian domain. Since R is not Noetherian there is a maximal ideal
M of R such that M is not finitely generated. Assume that M 1is
a SFT-ideal. By definition there is a finitely generated ideal B and
a positive integer k& such that o € B for each element a € Al
It is clear that VB = M and so B is M-primary. Since R is a
DVR, BRyr = (MRp ) = M'Rjy for some positive integer t. And
B=BRpyNR=M'Ry NR=M". Since B is finitely generated B is
inveritible and so is M. Hence M is finitely generated, a contradiction.
Therefore M is not a SFT-ideal and ht(M{|X{]) = co.
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