• Title/Summary/Keyword: NiCo

Search Result 2,699, Processing Time 0.028 seconds

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium (방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제)

  • Hwang, Kyu Sun;Park, Chan Woo;Lee, Kune-Woo;Park, So-Jin;Yang, Hee-Man
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.1
    • /
    • pp.15-26
    • /
    • 2017
  • Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells

  • Kim, Jun Ho;Jang, Geun Young;Yun, Jeong Woo
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.336-345
    • /
    • 2020
  • Nickel-doped lanthanum cobalt oxide (LaCo1-xNixO3-δ, LCN) was investigated as an alternative anode material for solid oxide fuel cells. To improve its catalytic activity for steam methane reforming (SMR) reaction, Ni2+ was substituted into Co3+ lattice in LaCoO3. LCN anode, synthesized using the Pechini method, reacts with yttria-stabilized zirconia (YSZ) electrolyte at high temperatures to form an electrochemically inactive phase such as La2Zr2O7. To minimize the interlayer by-products, the LCN was coated via a double-tape casting method on the Ni/YSZ anode as a catalytic functional layer. By increasing the Ni doping amount, oxygen vacancies in the LCN increased and the cell performance improved. CH4 fuel decomposed to H2 and CO via SMR reaction in the LCN functional layer. Hence, the LCN-coated Ni/YSZ anode exhibited better cell performance than the Ni/YSZ anode under H2 and CH4 fuels. LCN with 12 mol% of Ni (LCN12)-modified Ni/YSZ anode showed excellent long-term stability under H2 and CH4 conditions.

Characterization of Composite Silicide Obtained from NiCo-Alloy Films (코발트/니켈 합금박막으로부터 형성된 복합실리사이드)

  • Song Ohsung;Cheong Seonghwee;Kim Dugjoong
    • Korean Journal of Materials Research
    • /
    • v.14 no.12
    • /
    • pp.846-850
    • /
    • 2004
  • NiCo silicide films have been fabricated from $300{\AA}-thick\;Ni_{1-x}Co_{x}(x=0.1\sim0.9)$ on Si-substrates by varying RTA(rapid thermal annealing) temperatures from $700^{\circ}C\;to\;1100^{\circ}C$ for 40 sec. Sheet resistance, cross-sectional microstructure, and chemical composition evolution were measured by a four point probe, a transmission electron microscope(TEM), and an Auger depth profilemeter, respectively. For silicides of the all composition and temperatures except for $80\%$ of the Ni composition, we observed small sheet resistance of sub- $7\;{\Omega}/sq.,$ which was stable even at $1100^{\circ}C$. We report that our newly proposed NiCo silicides may obtain sub 50 nm-thick films by tunning the nickel composition and silicidation temperature. New NiCo silicides from NiCo-alloys may be more appropriate for sub-0.1${\mu}m$ CMOS process, compared to conventional single phase or stacked composit silicides.

Annealing Effect on Exchange Bias in NiFe/FeMn/CoFe Trilayer Thin Films

  • Kim, Ki-Yeon;Choi, Hyeok-Cheol;You, Chun-Yeol;Lee, Jeong-Soo
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.97-101
    • /
    • 2008
  • We investigated the exchange bias fields at the NiFe/FeMn and FeMn/CoFe interfaces in 18.9-nm NiFe/15.0-nm FeMn/17.6-nm CoFe trilayer thin films as the annealing temperature was varied from room temperature to $250^{\circ}C$ in a vacuum for 1 hour in a magnetic field of 150 Oe. Interestingly, magnetic hysteresis (M-H) measurements showed that NiFe/FeMn/CoFe trilayer thin films exhibited a completely contrasting variation of the exchange bias fields at both the NiFe/FeMn and FeMn/CoFe interfaces with annealing temperatures. High-angle X-ray diffraction (XRD) measurements indicated the absence of any discernible effect of thermal treatment on the NiFe(111) and FeMn(111) peaks. The compositional depth profile obtained from X-ray photoelectron spectroscopy (XPS) results presented the asymmetric compositional depth profiles of the Mn and Fe atoms throughout the FeMn layer. We contend that this asymmetric compositional depth profile and the preferential Mn diffusion into the NiFe layer, compared to that into the CoFe layer, are conclusive experimental evidence of the contrasting variation of the exchange bias fields at two interfaces having a common polycrystalline FeMn(111) layer.

Impedance Matching of Electrically Small Antenna with Ni-Zn Ferrite Film

  • Lee, Jaejin;Hong, Yang-Ki;Lee, Woncheol;Park, Jihoon
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.428-431
    • /
    • 2013
  • We demonstrate that a partial loading of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ (Ni-Zn ferrite) film remarkably improves impedance matching of electrically small $Ba_3Co_2Fe_{24}O_{41}$ ($Co_2Z$) hexaferrite antenna. A 3 ${\mu}m$ thick Ni-Zn ferrite film was deposited on a silicon wafer by the electrophoresis deposition process and post-annealed at $400^{\circ}C$. The fabricated Ni-Zn ferrite film has saturation magnetization of $268emu/cm^3$ and coercivity of 89 Oe. A partial loading of the Ni-Zn ferrite film on the $Co_2Z$ hexaferrite helical antenna increases antenna return loss to 24.7 dB from 9.0 dB of the $Co_2Z$ antenna. Experimental results show that impedance matching and maximum input power transmission to the antenna without additional matching elements can be realized, while keeping almost the same size as the $Co_2Z$ antenna size.

Effect of Al on Structural and Magnetic Characteristics of CoCrFeNiMnAlx High Entropy Alloys

  • Majid Tavoosi;Ali Ghasemi;Gholam Reza Gordani;Mohammad Reza Loghman Estarki
    • Korean Journal of Materials Research
    • /
    • v.33 no.3
    • /
    • pp.95-100
    • /
    • 2023
  • This research examines the effect of adding aluminum on the structural, phasic, and magnetic properties of CoCrFe NiMnAlx high-entropy alloys. To this aim, the arc-melt process was used under an argon atmosphere for preparing cast samples. The phasic, structural, and magnetic properties of the samples were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM), and vibrational magnetometry (VSM) analyses. Based on the results, the addition of aluminum to the compound caused changes in the crystalline structure, from FCC solid solution in the CoCrFeNiMn sample to CoCrFeNiMnAl BBC solid solution. It was associated with changes in the magnetic property of CoCrFeNiMnAlx high-entropy alloys, from paramagnetic to ferromagnetic. The maximum saturation magnetization for the CoCrFeNiMnAl casting sample was estimated to be around 79 emu/g. Despite the phase stability of the FCC solid solution with temperature, the solid solution phase formed in the CrCrFeNiMnAl high-entropy compound was not stable, and changed into FCC solid solution with temperature elevation, causing a reduction in saturation magnetization to about 7 emu/g.

Structural Study of Tetragonal-Ni1-xMxSi/Si (001) (M = Co, Pd, Pt): First Principles Calculation (Tetragonal-Ni1-xMxSi/Si (001) (M = Co, Pd, Pt) 구조연구 : 제 1 원리계산)

  • Kim, Dae-Hee;Seo, Hwa-Il;Kim, Yeong-Cheol
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.830-834
    • /
    • 2008
  • NiSi is currently being employed in 45 nm CMOS devices as a contact material. We employed a first principles calculation to understand the movements of atoms when Co, Pd, and Pt were added to tetragonal-NiSi on Si (001). The Ni atoms in the tetragonal-NiSi/Si (001) favored away from the original positions along positive c-direction in a systematic way during the energy minimization. Two different Ni sites were identified at the interface and the bulk, respectively. The Ni site at the interface farther away from the interface was more favorable for Pd and Pt substitution. Co, however, prafered the bulk site to the interface site, unlike Pd and Pt.

Study of Ni-germano Silicide Thermal Stability for Nano-scale CMOS Technology (Nano-scale CMOS를 위한 Ni-germano Silicide의 열 안정성 연구)

  • Huang, Bin-Feng;Oh, Soon-Young;Yun, Jang-Gn;Kim, Yong-Jin;Ji, Hee-Hwan;Kim, Yong-Goo;Wang, Jin-Suk;Lee, Hi-Deok
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.11
    • /
    • pp.1149-1155
    • /
    • 2004
  • In this paper, novel methods for improvement of thermal stability of Ni-germano Silicide were proposed for nano CMOS applications. It was shown that there happened agglomeration and abnormal oxidation in case of Ni-germano Silicide using Ni only structure. Therefore, 4 kinds of tri-layer structure, such as, Ti/Ni/TiN, Ni/Ti/TiN, Co/Ni/TiN and Ni/Co/TiN were proposed utilizing Co and Ti interlayer to improve thermal stability of Ni-germano Silicide. Ti/Ni/TiN structure showed the best improvement of thermal stability and suppression of abnormal oxidation although all kinds of structures showed improvement of sheet resistance. That is, Ti/Ni/TiN structure showed only 11 ohm/sq. in spite of 600 $^{\circ}C$, 30 min post silicidation annealing while Ni-only structure show 42 ohm/sq. Therefore, Ti/Ni/TiN structure is highly promising for nano-scale CMOS technology.

Comparison of the Heavy Metal Concentrations of the Soils and Plants at the Serpentine and Rhyolite Resions in Ulsan City (울산시의 사문암 및 유문암 지역 표토와 식물체의 중금속 함량 비교)

  • 김명희;민일식;송석환
    • Korean Journal of Environment and Ecology
    • /
    • v.13 no.2
    • /
    • pp.176-183
    • /
    • 1999
  • 울산지역의 사문암과 유문암 토양 및 쑥과 참억새의 중금속 함량을 비교하기 위하여 중금속 농도를 분석한 결과 사문암 풍화토의 Ni, Cr 및 Co 함량은 매우 높았다. Ni은 1,483~1.524ppm, Cr은 372~435ppm, Co는 68~79ppm였으며, 유문암 풍화토의 Zn 함량은 222ppm으로 사문암 풍화토보다 높았다. 사문암 풍화토에서 생육하는 쑥의 중금속 함량은 Ni이 108~195ppm. Cr이 135~180ppm, Co가 10.2~22.5ppm으로 유문암 풍화토의 쑥보다 높았고, Zn은 유문암 토양 쑥에서 높았다. 참억새의 경우는 Ni, Cr, Co, As, Se, Mo 및 Fe 가 사문암 토양에서 높았고, Zn 흡수는 유문암 토양에서 많았다. 쑥의 중금속 함량은 대체적으로 지상부가 지하부보다 높았으나, 참억새의 경우는 지하부가 높은 경향을 나타내었다. 토양과 식물체(쑥과 참억새)의 중금속 함량을 비교해 보면 Ni, Cr, Co, As, Sc, Mo 및 Fe의 함량은 토양의 식물체보다 높았으나, 유문암 토양에 있는 쑥의 Zn 흡수는 토양보다 다소 높았다. 식물체의 Fe:Ni 비율은 유문암 토양보다는 사문암 토양이, 참억새보다는 쑥이 낮게 나타났다.

  • PDF