Tetragonal-Ni1-xMxSi/Si (001) (M = Co, Pd, Pt) 구조연구 : 제 1 원리계산

Structural Study of Tetragonal-Ni1-xMxSi/Si (001) (M = Co, Pd, Pt): First Principles Calculation

  • 김대희 (한국기술교육대학교 신소재공학과) ;
  • 서화일 (한국기술교육대학교 정보기술공학부) ;
  • 김영철 (한국기술교육대학교 신소재공학과)
  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 투고 : 2008.08.20
  • 발행 : 2008.12.25

초록

NiSi is currently being employed in 45 nm CMOS devices as a contact material. We employed a first principles calculation to understand the movements of atoms when Co, Pd, and Pt were added to tetragonal-NiSi on Si (001). The Ni atoms in the tetragonal-NiSi/Si (001) favored away from the original positions along positive c-direction in a systematic way during the energy minimization. Two different Ni sites were identified at the interface and the bulk, respectively. The Ni site at the interface farther away from the interface was more favorable for Pd and Pt substitution. Co, however, prafered the bulk site to the interface site, unlike Pd and Pt.

키워드

참고문헌

  1. C. Lavoie, F. M. d'Heurle, C. Detavernier, and C. Cabral Jr., Microelect. Eng. 70, 144 (2003) https://doi.org/10.1016/S0167-9317(03)00380-0
  2. K. Yoon and O. Song, J. Kor. Inst. Met & Mater. 46, 69 (2008)
  3. M. A. Pawlak, J. A. Kittl, and O. Chamirian, Microelect. Eng. 76, 349 (2004) https://doi.org/10.1016/j.mee.2004.07.037
  4. B. Cafra, A. Alberti, and L. Ottaviano, Mat. Sci. Eng. 228, 114 (2004)
  5. G. Profeta, S. Picozzi, A. Continenza, and R. Podloucky, Phys. Rev. B, 70, 235338 (2004) https://doi.org/10.1103/PhysRevB.70.235338
  6. M. Kh. Rabadanov and M. B. Ataev, Inorg. Mat. 38, 120 (2002) https://doi.org/10.1023/A:1014056825562
  7. J. Foggiato, W. S. Yoo, M. Ouknine, T. Murakami, and T. Fukada, Mat. Sci. Eng. 56, 114 (2006)
  8. Y. -C. Kim, P. Adusumili, L. J. Lauhon, D. N. Seidman, S.Y. Jung, H. D. Lee, R. L. Alvis, R. M. Ulfig, and J. D. Olson, Appl. Phys. Lett. 91, 113106 (2007) https://doi.org/10.1063/1.2784196
  9. D. -H. Kim, H. -I. Seo, and Y. -C. Kim, Journal of KSDET 6, 65 (2007)
  10. D.-H. Kim, H.-I. Seo, and Y.-C. Kim, Kor. J. of Mat. Res. 18, 482 (2008) https://doi.org/10.3740/MRSK.2008.18.9.482
  11. G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993) https://doi.org/10.1103/PhysRevB.47.558
  12. G. Kresse and J. Hafner, Kor. J. of Mat. Res. 49, 14251 (1994)
  13. G. Kresse and J. Furthmuller, Comput. Mat. Sci. 6, 15 (1996) https://doi.org/10.1016/0927-0256(96)00008-0
  14. G. Kresse and J. Furthmuller, Phys. Rev. B, 54, 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  15. G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
  16. P. Pulay, Chem. Phys. Lett. 73, 393 (1980) https://doi.org/10.1016/0009-2614(80)80396-4
  17. Y. Imai and A. Watanabe, J. Alloys & Compounds 417, 173 (2006) https://doi.org/10.1016/j.jallcom.2005.06.084