Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.4.428

Impedance Matching of Electrically Small Antenna with Ni-Zn Ferrite Film  

Lee, Jaejin (Department of Electrical and Computer Engineering and Center for Materials for Information Technology, The University of Alabama)
Hong, Yang-Ki (Department of Electrical and Computer Engineering and Center for Materials for Information Technology, The University of Alabama)
Lee, Woncheol (Department of Electrical and Computer Engineering and Center for Materials for Information Technology, The University of Alabama)
Park, Jihoon (Department of Electrical and Computer Engineering and Center for Materials for Information Technology, The University of Alabama)
Publication Information
Abstract
We demonstrate that a partial loading of $Ni_{0.5}Zn_{0.5}Fe_2O_4$ (Ni-Zn ferrite) film remarkably improves impedance matching of electrically small $Ba_3Co_2Fe_{24}O_{41}$ ($Co_2Z$) hexaferrite antenna. A 3 ${\mu}m$ thick Ni-Zn ferrite film was deposited on a silicon wafer by the electrophoresis deposition process and post-annealed at $400^{\circ}C$. The fabricated Ni-Zn ferrite film has saturation magnetization of $268emu/cm^3$ and coercivity of 89 Oe. A partial loading of the Ni-Zn ferrite film on the $Co_2Z$ hexaferrite helical antenna increases antenna return loss to 24.7 dB from 9.0 dB of the $Co_2Z$ antenna. Experimental results show that impedance matching and maximum input power transmission to the antenna without additional matching elements can be realized, while keeping almost the same size as the $Co_2Z$ antenna size.
Keywords
electrophoresis deposition; Ni-Zn ferrite film; impedance matching; electrically small antenna; $Co_2Z$ hexaferrite;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Lee, Y. K. Hong, S. Bae, G. S. Abo, W. M. Seong, and G. H. Kim, IEEE Antennas Wirel. Propag. Lett. 10, 603 (2011).   DOI   ScienceOn
2 H. Moon, G. Y. Lee, C. C. Chen, and J. L. Volakis, IEEE Antennas Wirel. Propag. Lett. 11, 322 (2012).   DOI   ScienceOn
3 W. Lee, Y. K. Hong, J. Lee, D. Gillespie, K. G. Ricks, F. Hu, and J. Abu-Qahouq, IEEE Antennas Wirel. Propag. Lett. 12, 765 (2013).   DOI   ScienceOn
4 Z. Zheng, H. Zhang, J. Q. Xia, and F. Bai, IEEE Trans. Magn. 49, 4214 (2013).   DOI   ScienceOn
5 V. G. Harris, IEEE Trans. Magn. 48, 1075 (2012).   DOI   ScienceOn
6 L. J. Chu, J. Appl. Phys. 19, 1163 (1948).   DOI
7 S. Bae, Y. K. Hong, and A. Lyle, J. Appl. Phys. 103, 07E929 (2008).   DOI
8 G. M. Yang, X. Xing, A. Daigle, O. Obi, M. Liu, J. Lou, S. Stoute, K. Naishadham, and N. X. Sun, IEEE Trans. Antennas Propag. 58, 648 (2010).   DOI   ScienceOn
9 S. Hashi, N. Takada, K. Nishimura, O. Sakurada, S. Yanase, Y. Okazaki, and M. Inoue, IEEE Trans. Magn. 41, 3487 (2005).   DOI   ScienceOn
10 S. Hashi, Y. Tokunaga, S. Yanase, Y. Okazaki, O. Sakurada, K. Nishimura, and M. Inoue, IEEE Trans. Magn. 40, 2796 (2004).   DOI   ScienceOn
11 S. Bae, Y. K. Hong, J. J. Lee, W. M. Seong, J. S. Kum, W. K. Ahn, S. H. Park, G. S. Abo, J. Jalli, and J. H. Park, IEEE Trans. Magn. 46, 2361 (2010).   DOI   ScienceOn
12 G. Breed, High Freq. Electronics 6, 50 (2007).
13 J. Prado, M. E. Gomez, P. Prieto, and A. Mendoza, J. Magn. Magn. Mater. 321, 2792 (2009).   DOI   ScienceOn
14 O. F. Caltun, J. Optoelectron. Adv. Mater. 7, 739 (2005).
15 D. C. Kulkarni, U. B. Lonkar, and Vijaya Puri, J. Magn. Magn. Mater. 320, 1844 (2008).   DOI   ScienceOn
16 P. Gao, E. V. Rebrov, T. M. W. G. M. Verhoeven, J. C. Schouten, R. Lkeismit, G. Kozlowski, J. Cetnar, Z. Turgut, and G. Subramanyam, J. Appl. Phys. 107, 044317 (2010).   DOI   ScienceOn