DOI QR코드

DOI QR Code

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium

방사성 세슘 제거를 위한 코발트 혹은 니켈 페로시아나이드가 도입된 자성흡착제

  • Received : 2016.09.30
  • Accepted : 2016.10.25
  • Published : 2017.03.30

Abstract

Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.

오염수로부터 자성분리가 가능하며, 방사성 세슘을 효율적으로 제거하기 위한 코발트 페로시아나이드(cobalt ferrocyanide, CoFC) 혹은 니켈 페로시아나이드(nickel ferrocyanide, NiFC)가 도입된 자성입자 흡착제를 제조하였다. $Fe_3O_4$ 나노입자는 공침법을 이용해 제조하였고, $Co^{2+}$$Ni^{2+}$ 이온을 입자 표면에 도입시키기 위해 금속이온과 금속 배위결합(metalcoordination)을 하는 카르복실기를 포함한 숙신산(succinic acid, SA)을 자성나노입자(magnetic nanoparticles, MNPs) 표면에 코팅하였다. CoFC와 NiFC는 자성나노입자 표면에 도입된 $Co^{2+}$ 혹은 $Ni^{2+}$ 이온이 hexacynoferrate와 결합하여 형성된다. 제조된 CoFC-MNPs 그리고 NiFC-MNPs는 각각 $43.2emu{\cdot}g^{-1}$, $47.7emu{\cdot}g^{-1}$의 우수한 포화자화 값을 보여주었다. X-선 회절분석(XRD), 퓨리에 변환 적외선 분광분석(FT-IR), 나노입자 입도 분석기(DLS), 투과전자현미경(TEM) 등의 분석을 통해 흡착제의 물성을 파악하고, 세슘에 대한 흡착 성능을 알아보았다. 흡착실험을 평가하기 위해 Langmuir/Freundlich 등온흡착식을 이용해 실험 결과 값을 곡선맞춤 하였고, CoFC-MNPs와 NiFC-MNPs의 최대흡착량($q_m$)은 각각 $15.63mg{\cdot}g^{-1}$, $12.11mg{\cdot}g^{-1}$이다. CoFC-MNPs와 NiFC-MNPs는 방사성 세슘에 대해서도 최저 99.09%의 제거율을 가지며, 경쟁이온의 존재에도 방사성 세슘만을 선택적으로 흡착한다.

Keywords

References

  1. D.J. Yang, S. Sarina, H. Zhu, H. Liu, Z. Zheng, M. Xie, S.V. Smith, and S. Komarneni, "Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes", Angew. Chem. Int. Edit., 50, 10594-10598 (2011). https://doi.org/10.1002/anie.201103286
  2. T.J. Yasunari, A. Stohl, R.S. Hayano, J.F. Burkhart, S. Eckhardt, and T.Yasunari, "Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident", Proc. Natl. Acad. Sci., 108, 19530-19534 (2011). https://doi.org/10.1073/pnas.1112058108
  3. R.R. Sheha, "Synthesis and characterization of magnetic hexacyanoferrate(II) polymeric nanocomposite for separation of cesium from radioactive waste solutions", J. Colloid Interface Sci., 388, 21-30 (2012). https://doi.org/10.1016/j.jcis.2012.08.042
  4. E.H. Borai, R. Harjula, L. Malinen, and A. Paajanen, "Efficient removal of cesium form low-level radioactive liquid waste using natural and impregnated zeolite minerals", J. Hazard. Mater., 172(1), 416-422 (2009). https://doi.org/10.1016/j.jhazmat.2009.07.033
  5. T.A. Todd and V.N. Romanovskiy, "A comparison of crystalline silicotitanate and ammonium molybdophosphate-polyacrylonitrile composite sorbent for the separation of cesium from acidic waste", Radio Chem., 47(4), 398-402 (2005).
  6. P.A. Hass, "A review of information on ferrocyanide solid for removal of cesium from solutions", Sep. Sci. Technol., 28, 2479-2506 (1993). https://doi.org/10.1080/01496399308017493
  7. H. Mimura, J. Lehto, and R. Harjula, "Selective removal of cesium from simulated high-level liquid wastes by insoluble ferrocyanides", J. Nucl. Sci. Technol., 34, 607-609 (1997). https://doi.org/10.1080/18811248.1997.9733715
  8. C. Dwivedi, S.K. Pathak, M. Kumar, S.C. Tripathi, and P.N. Bajai, "Potassium cobalt hexacyanoferrate-gel beads for cesium removal : kinetics and sorption studies", RSC. Adv., 3, 22102-22110 (2013). https://doi.org/10.1039/c3ra43463j
  9. V. Avramenko, S. Bratskaya, V. Zheleznov, I. Sheveleva, O. Volitenko, and V. Sergienko, "Colloid stable sorbents for cesium removal : Preparation and application of latex particles functionalized with transition metals ferrocyanides", J. Hazard. Mater., 186, 1343-1350 (2011). https://doi.org/10.1016/j.jhazmat.2010.12.009
  10. C. Thammawong, P. Opaprakasit, P. Tangboriboonrat, and P. Sreearunothai, "Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment", J. Nanopart. Res., 15, 1689-1699 (2013). https://doi.org/10.1007/s11051-013-1689-z
  11. H. Yang, L. Sun, J. Zhai, H. Li, Y. Zhao, and H. Yu, "In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water", J. Mater. Chem. A., 2, 326-332 (2014). https://doi.org/10.1039/C3TA13548A
  12. T. Sasaki and S. Tanaka, "Magnetic separation of cesium ion using Prussian blue modified magnetie", Chem. Lett., 41, 32-34 (2012). https://doi.org/10.1246/cl.2012.32
  13. Y. Namiki, T. Namiki, Y. Ishii, S. Koido, Y. Nagase, A. Tsubota, N. Tada, and Y. Kitamoto, "Inorganic-organic magnetic nanocomposites for use in preventive medicine : a rapid and reliable elimination system for cesium", Pharm. Res., 29, 1404-1418 (2012). https://doi.org/10.1007/s11095-011-0628-x
  14. H.M. Yang, S.C. Jang, S.B. Hong, K.W. Lee, C.H. Rho, Y.S. Huh, and B.K. Seo, "Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water", J. Alloys. Comp., 657, 387-393 (2016). https://doi.org/10.1016/j.jallcom.2015.10.068
  15. R. Yi, G. Ye, F. Wu, M. Wen, X. Feng, and J. Chen, "Highly efficient removal of $^{137}Cs$ in seawater by potassium titanium ferrocyanide functionalized magnetic microspheres with multilayer core-shell structure", RSC Adv., 4, 37600-37608 (2014). https://doi.org/10.1039/C4RA05397D
  16. H.M. Yang, S.B. Hong, Y.S. Choi, K.W. Lee, B.K. Seo, and J.K. Moon, "Copper ferrocyanide-functionalized magnetic adsorbents using polyethyleneimine coated $Fe_3O_4$ nanoparticles for the removal of radioactive cesium", J. Nanosci. Nanotechnol., 16, 3067-3070 (2016). https://doi.org/10.1166/jnn.2016.11084
  17. H.M. Yang, S.C. Jang, S.B. Hong, K. W.Lee, J.K. Moon, Y.S. Huh, and B.K. Seo "Copper ferrocyanidefunctionalized magnetic adsorbents using polyvinylpyrrolidone-coated $Fe_3O_4$ nanoclusters for the removal of radioactive cesium", J. Nanosci. Nanotechnol., 16, 10864-10868 (2016). https://doi.org/10.1166/jnn.2016.13254
  18. K.S. Hwang, C.W. Park, S.B. Hong, K.W. Lee, B.K. Seo, S.J. Park, and H.M. Yang, "Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles", Colloids Surf. A., 516, 375-382 (2017). https://doi.org/10.1016/j.colsurfa.2016.12.052
  19. D.S. Yang, "Copper ferrocyanide functionalized coreshell magnetic silica composites for the selective removal of cesium ions from radioactive liquid waste", Graduate School of Kyungpook National University, Master of Engineering Thesis (2014).
  20. M.T. Ganzerli Valentini, S. Meloni, and V.Maxia, "Adsorption of monovalent ions on zinc ferrocyanide", J. Inorg. Nucl. Chem., 34, 1427 - 1436 (1972). https://doi.org/10.1016/0022-1902(72)80343-9
  21. S. Singh, K.C. Barick, and D. Bahadur, "Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens", J. Hazard. Mater., 192, 1539-1547 (2011). https://doi.org/10.1016/j.jhazmat.2011.06.074
  22. R. Greenwood, "Review of measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics", Adv Colloid Interface Sci., 106, 55-81 (2003). https://doi.org/10.1016/S0001-8686(03)00105-2
  23. D. Hanaor, M. Michelazzi, C. Leonelli, and C.C. Sorrell, "The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of $ZrO_2$", J. Eu Ceram Soc., 32, 235-244 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.08.015
  24. F.H. Bijarbooneh, Y. Zhao, J.H. Kim, Z. Sun, V. Malgras, S.H. Aboutalebi, Y.U. Heo, M. Ikegami, and S.X. Dou, "Aqueous colloidal stability evaluated by zeta potential measurmnr and Resultant $TiO_2$ for superior photovoltaic performance", J. Am. Ceram. Sco., 96(8), 2636-2643 (2013). https://doi.org/10.1111/jace.12371
  25. M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawad, and M. Kurihara, "Proton-exchange mechanism of specific $Cs^+$ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules", Dalton Trans., 42, 16049-16055 (2013). https://doi.org/10.1039/c3dt51637g