Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00843

Characteristics of LaCo1-xNixO3-δ Coated on Ni/YSZ Anode using CH4 Fuel in Solid Oxide Fuel Cells  

Kim, Jun Ho (School of Chemical Engineering, Chonnam National University)
Jang, Geun Young (School of Chemical Engineering, Chonnam National University)
Yun, Jeong Woo (School of Chemical Engineering, Chonnam National University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.4, 2020 , pp. 336-345 More about this Journal
Abstract
Nickel-doped lanthanum cobalt oxide (LaCo1-xNixO3-δ, LCN) was investigated as an alternative anode material for solid oxide fuel cells. To improve its catalytic activity for steam methane reforming (SMR) reaction, Ni2+ was substituted into Co3+ lattice in LaCoO3. LCN anode, synthesized using the Pechini method, reacts with yttria-stabilized zirconia (YSZ) electrolyte at high temperatures to form an electrochemically inactive phase such as La2Zr2O7. To minimize the interlayer by-products, the LCN was coated via a double-tape casting method on the Ni/YSZ anode as a catalytic functional layer. By increasing the Ni doping amount, oxygen vacancies in the LCN increased and the cell performance improved. CH4 fuel decomposed to H2 and CO via SMR reaction in the LCN functional layer. Hence, the LCN-coated Ni/YSZ anode exhibited better cell performance than the Ni/YSZ anode under H2 and CH4 fuels. LCN with 12 mol% of Ni (LCN12)-modified Ni/YSZ anode showed excellent long-term stability under H2 and CH4 conditions.
Keywords
Solid Oxide Fuel Cell; Alternative Anode; $LaCo_{1-x}Ni_xO_{3-{\delta}}$; Interlayer by-Product; Methane Fuel;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S.C. Singhal, Solid State Ionics, 2002, 152, 405-410.   DOI
2 A.B. Stambouli, E. Traversa, Renew. Sust. Energ. Rev., 2002, 6, 433-455.   DOI
3 S. Park, J.M. Vohs, R.J. Gorte, Nature, 2000, 404, 265-267.   DOI
4 J.V. Herle, Y. Membrez, O. Bucheli, J. Power Sources, 2004, 127(1-2), 300-312.   DOI
5 D.K. Niakolas, Appl. Catal.: A-Gen., 2014, 486, 123-142.   DOI
6 S. Zha, Z. Cheng, M. Liu, J. Electrochem. Soc., 2007, 154(2), B201-B206.   DOI
7 R.J. Gorte, J.M. Vohs, J. Catal. 2003, 216(1-2), 477-486.   DOI
8 B.S. Prakash, S.S. Kumar, S.T. Aruna, Renew. Sust. Energ. Rev., 2014, 36, 149-179.   DOI
9 Z. Cheng, J.H. Wang, Y. Choi, L. Yang, M.C. Lin, M. Liu, Energ. Environ. Sci., 2011, 4(11), 4380-4409.   DOI
10 J.J.A. Flores, M.L.A. Rodriguez, G.A.Espinosa, J.V.A Vera, Int. J. Hydrogen. Energ, 2019. 44(24), 12529-12542.   DOI
11 S.P.S. Shaikh, A. Muchtar, M.R. Somalu, Renew. Sust. Energ. Rev., 2015, 51, 1-8.   DOI
12 J.B. Goodenough, Y.H. Huang, J. Power Sources, 2007, 173(1), 1-10.   DOI
13 J.B. Wang, J.C. Jang, T.J. Huang, J. Power Sources, 2003, 122(2), 122-131.   DOI
14 M. Watanabe, H. Uchida, M. Shibata, N. Mochizuki, K. Amikura, J. Elecrochem. Soc., 1994, 141(2), 342-346.   DOI
15 S.Sydyknazar, V.Cascos, M.T. Fernandez-Diaz, J.A. Alonso, J. Materiomics, 2019, 5, 280-285.   DOI
16 V.Cascos, L. Troncoso, J.A. Alonso, M.T. Fernandes-Diaz, Renew. Energ., 2017, 111, 476-483.   DOI
17 S. Duran, N. Rangel, C. Silva, M.A. Macias, E. Capoen, C. Pirovano, A. Niemczyk, L. Suescun, P. Roussel, G.H. Gauthier, Solid State Ionics, 2019, 341, 115031.   DOI
18 J. Zhou, N. Wang, J. Cui, J. Wang, J. Yang, Z. Zong, Z. Zhang, Q. Chen, X. Zheng, K. Wu, J. Alloy. Compd., 2019, 792, 1132-1140.   DOI
19 M. Gou, R. Ren, W. Sun, C. Xu, X. Meng, Z. Wang, J. Qiao, K. Sun, Ceram. Int., 2019, 45(12), 15696-15704.   DOI
20 J. Liu, J. Ding, L. Miao, Z. Gong, K. Li, W. Liu, J. Alloy. Compd., 2019, 786, 163-168.   DOI
21 H.S. Kim, S.P. Yoon, J.W. Yun, S.A. Song, S.C. Jang, S.W. Nam, Y.G. Shul, Int. J. Hydrogen Energ., 2012. 37(21), 16130-16139.
22 H.Y. Zhu, P.F. Zhang, S. Dai, ACS. Catal, 2015, 5(11), 6370-6385.   DOI
23 J.M. Lee, J.W. Yun, Ceram. Int., 2016, 42(7), 8698-8705.   DOI
24 E.K. Park, S. Lee, J.W. Yun, Appl. Surf. Sci., 2018, 429, 171-179.   DOI
25 M.A. Gwan, J.W. Yun, J. Electroceram., 2018, 40(3), 171-179.   DOI
26 D.B. Meadowcroft, Nature, 1970, 226(5248), 847-848.   DOI
27 J. Shim, K.J. Lopez, H.J. Sun, G. Park, J.C. An, S. Eom, S. Shimpalee, J.W. Weidner, J. Appl. Electrochem., 2015, 45(9), 1005-1012.   DOI
28 D. Konwar, H.H. Yoon, J. Mater. Chem. A, 2016, 4(14), 5102-5106.   DOI
29 Y. Zhang, N. Xu, H. Fan, M. Han, Energ. Procedia, 2019, 158, 2250-2255.   DOI
30 D.W. Lee, J.H. Won, K.B. Shm, Mater. Lett., 2003, 57(22-23), 3346-3351.   DOI
31 M. Popa, M. Kakihana, Solid State Ionics, 2002, 151(1-4), 251-257.   DOI
32 Y. Sun, J. Li, Y. Zeng, B.S. Amirkhiz, M. Wang, Y. Behnamian, J. Luo, J. Mater. Chem. A, 2015, 3(20), 11048-11056.   DOI
33 J.W. Yun, S.P. Yoon, H.S. Kim, J. Han, S.W. Nam, Int. J. Hydrogen Energ., 2012. 37(5), 4356-4366.