Browse > Article
http://dx.doi.org/10.4283/JMAG.2008.13.3.097

Annealing Effect on Exchange Bias in NiFe/FeMn/CoFe Trilayer Thin Films  

Kim, Ki-Yeon (Neutron Science Division, Korea Atomic Energy Research Institute)
Choi, Hyeok-Cheol (Department of Physics, Inha University)
You, Chun-Yeol (Department of Physics, Inha University)
Lee, Jeong-Soo (Neutron Science Division, Korea Atomic Energy Research Institute)
Publication Information
Abstract
We investigated the exchange bias fields at the NiFe/FeMn and FeMn/CoFe interfaces in 18.9-nm NiFe/15.0-nm FeMn/17.6-nm CoFe trilayer thin films as the annealing temperature was varied from room temperature to $250^{\circ}C$ in a vacuum for 1 hour in a magnetic field of 150 Oe. Interestingly, magnetic hysteresis (M-H) measurements showed that NiFe/FeMn/CoFe trilayer thin films exhibited a completely contrasting variation of the exchange bias fields at both the NiFe/FeMn and FeMn/CoFe interfaces with annealing temperatures. High-angle X-ray diffraction (XRD) measurements indicated the absence of any discernible effect of thermal treatment on the NiFe(111) and FeMn(111) peaks. The compositional depth profile obtained from X-ray photoelectron spectroscopy (XPS) results presented the asymmetric compositional depth profiles of the Mn and Fe atoms throughout the FeMn layer. We contend that this asymmetric compositional depth profile and the preferential Mn diffusion into the NiFe layer, compared to that into the CoFe layer, are conclusive experimental evidence of the contrasting variation of the exchange bias fields at two interfaces having a common polycrystalline FeMn(111) layer.
Keywords
exchange bias; preferential Mn diffusion; XPS depth profile; thermal stability;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Pratap Kollu, Doung Young Kim, and Cheol Ki Kim, J. Magnetics 13, 1 (2008)   DOI   ScienceOn
2 M. Kowalewski, W. H. Butler, N. Moghadam, G. M. Stocks, T. C. Schulthess, K. J. Song, J. R. Thompson, A. S. Arrott, T. Zhu, J. Drewes, and R. R. Katti, J. Appl. Phys. 87, 5732 (2000)   DOI   ScienceOn
3 D. Briggs and M. P. Seah, Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons Ltd, Chichster (1983) p. 133
4 S. Tanuma, C. J. Powell, and D. R. Penn, Surf. Anal. 11, 577 (1998)
5 M. Tsunoda and M. Takahashi, J. Magnetics 7, 80 (2002)   DOI   ScienceOn
6 F. Radu and H. Zabel, Exchange Bias Effect of Ferro-/Antiferromagnetic Hetero structures, STMP 227, 97 (2007)
7 Young Deung Kim, Kap Soo Yoon, Ja Hyun Koo, Ki Woong Kim, Chae Ok Kim, and Jin Pyo Kim, J. Korean Phys. Soc. 45, 683 (2004)
8 R. Zhang and Roy F. Willis, Phys. Rev. Lett. 86, 2665 (2001)   DOI   ScienceOn
9 R. C. O'Handley, Modern Magnetic Materials: Principles and Applications, John Wiley & Sons, Inc., New York (2000) p. 99
10 J. H. Lee, H. D. Jeong, C. S. Yoon, C. K. Kim, B. G. Park, and T. D. Lee, J. Appl. Phys. 91, 1431 (2002)   DOI   ScienceOn
11 S. S. P. Parkin, V. R. Deline, R. O. Hilleke, and G. P. Felcher, Phys. Rev. B 42, 10583 (1990)   DOI   ScienceOn
12 S. W. Kim, J. K. Kim, J. H. Kim, B. K. Kim, J. Y. Lee, S. S. Lee, D. G. Hwang, and J. R. Rhee, J. Appl. Phys. 93, 6602 (2003)   DOI   ScienceOn
13 C. S. Yoon, J. H. Lee, and C. K. Kim, J. Appl. Phys. 93, 8910 (2003)   DOI   ScienceOn