Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2017.15.1.15

Cobalt and Nickel Ferrocyanide-Functionalized Magnetic Adsorbents for the Removal of Radioactive Cesium  

Hwang, Kyu Sun (Korea Atomic Energy Research Institute)
Park, Chan Woo (Korea Atomic Energy Research Institute)
Lee, Kune-Woo (Korea Atomic Energy Research Institute)
Park, So-Jin (Chungnam National University)
Yang, Hee-Man (Korea Atomic Energy Research Institute)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.15, no.1, 2017 , pp. 15-26 More about this Journal
Abstract
Cobalt ferrocyanide (CoFC) or nickel ferrocyanide (NiFC) magnetic nanoparticles (MNPs) were fabricated for efficient removal of radioactive cesium, followed by rapid magnetic separation of the absorbent from contaminated water. The $Fe_3O_4$ nanoparticles, synthesized using a co-precipitation method, were coated with succinic acid (SA) to immobilize the Co or Ni ions through metal coordination to carboxyl groups in the SA. CoFC or NiFC was subsequently formed on the surfaces of the MNPs as Co or Ni ions coordinated with the hexacyanoferrate ions. The CoFC-MNPs and NiFC-MNPs possess good saturation magnetization values ($43.2emu{\cdot}g^{-1}$ for the CoFC-MNPs, and $47.7emu{\cdot}g^{-1}$ for the NiFC-MNPs). The fabricated CoFC-MNPs and NiFC-MNPs were characterized by XRD, FT-IR, TEM, and DLS. The adsorption capability of the CoFC-MNPs and NiFC-MNPs in removing cesium ions from water was also investigated. Batch experiments revealed that the maximum adsorption capacity values were $15.63mg{\cdot}g^{-1}$ (CoFC-MNPs) and $12.11mg{\cdot}g^{-1}$ (NiFC-MNPs). Langmuir/Freundlich adsorption isotherm equations were used to fit the experimental data and evaluate the adsorption process. The CoFC-MNPs and NiFC-MNPs exhibited a removal efficiency exceeding 99.09% for radioactive cesium from $^{137}Cs$ solution ($18-21Bq{\cdot}g^{-1}$). The adsorbent selectively adsorbed $^{137}Cs$, even in the presence of competing cations.
Keywords
Metal ferrocyanide; Magnetic nanoparticle; Succinic acid; Radioactive cesium;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D.J. Yang, S. Sarina, H. Zhu, H. Liu, Z. Zheng, M. Xie, S.V. Smith, and S. Komarneni, "Capture of radioactive cesium and iodide ions from water by using titanate nanofibers and nanotubes", Angew. Chem. Int. Edit., 50, 10594-10598 (2011).   DOI
2 T.J. Yasunari, A. Stohl, R.S. Hayano, J.F. Burkhart, S. Eckhardt, and T.Yasunari, "Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident", Proc. Natl. Acad. Sci., 108, 19530-19534 (2011).   DOI
3 R.R. Sheha, "Synthesis and characterization of magnetic hexacyanoferrate(II) polymeric nanocomposite for separation of cesium from radioactive waste solutions", J. Colloid Interface Sci., 388, 21-30 (2012).   DOI
4 E.H. Borai, R. Harjula, L. Malinen, and A. Paajanen, "Efficient removal of cesium form low-level radioactive liquid waste using natural and impregnated zeolite minerals", J. Hazard. Mater., 172(1), 416-422 (2009).   DOI
5 T.A. Todd and V.N. Romanovskiy, "A comparison of crystalline silicotitanate and ammonium molybdophosphate-polyacrylonitrile composite sorbent for the separation of cesium from acidic waste", Radio Chem., 47(4), 398-402 (2005).
6 P.A. Hass, "A review of information on ferrocyanide solid for removal of cesium from solutions", Sep. Sci. Technol., 28, 2479-2506 (1993).   DOI
7 H. Mimura, J. Lehto, and R. Harjula, "Selective removal of cesium from simulated high-level liquid wastes by insoluble ferrocyanides", J. Nucl. Sci. Technol., 34, 607-609 (1997).   DOI
8 C. Dwivedi, S.K. Pathak, M. Kumar, S.C. Tripathi, and P.N. Bajai, "Potassium cobalt hexacyanoferrate-gel beads for cesium removal : kinetics and sorption studies", RSC. Adv., 3, 22102-22110 (2013).   DOI
9 V. Avramenko, S. Bratskaya, V. Zheleznov, I. Sheveleva, O. Volitenko, and V. Sergienko, "Colloid stable sorbents for cesium removal : Preparation and application of latex particles functionalized with transition metals ferrocyanides", J. Hazard. Mater., 186, 1343-1350 (2011).   DOI
10 C. Thammawong, P. Opaprakasit, P. Tangboriboonrat, and P. Sreearunothai, "Prussian blue-coated magnetic nanoparticles for removal of cesium from contaminated environment", J. Nanopart. Res., 15, 1689-1699 (2013).   DOI
11 H. Yang, L. Sun, J. Zhai, H. Li, Y. Zhao, and H. Yu, "In situ controllable synthesis of magnetic Prussian blue/graphene oxide nanocomposites for removal of radioactive cesium in water", J. Mater. Chem. A., 2, 326-332 (2014).   DOI
12 T. Sasaki and S. Tanaka, "Magnetic separation of cesium ion using Prussian blue modified magnetie", Chem. Lett., 41, 32-34 (2012).   DOI
13 Y. Namiki, T. Namiki, Y. Ishii, S. Koido, Y. Nagase, A. Tsubota, N. Tada, and Y. Kitamoto, "Inorganic-organic magnetic nanocomposites for use in preventive medicine : a rapid and reliable elimination system for cesium", Pharm. Res., 29, 1404-1418 (2012).   DOI
14 H.M. Yang, S.C. Jang, S.B. Hong, K.W. Lee, C.H. Rho, Y.S. Huh, and B.K. Seo, "Prussian blue-functionalized magnetic nanoclusters for the removal of radioactive cesium from water", J. Alloys. Comp., 657, 387-393 (2016).   DOI
15 R. Yi, G. Ye, F. Wu, M. Wen, X. Feng, and J. Chen, "Highly efficient removal of $^{137}Cs$ in seawater by potassium titanium ferrocyanide functionalized magnetic microspheres with multilayer core-shell structure", RSC Adv., 4, 37600-37608 (2014).   DOI
16 H.M. Yang, S.B. Hong, Y.S. Choi, K.W. Lee, B.K. Seo, and J.K. Moon, "Copper ferrocyanide-functionalized magnetic adsorbents using polyethyleneimine coated $Fe_3O_4$ nanoparticles for the removal of radioactive cesium", J. Nanosci. Nanotechnol., 16, 3067-3070 (2016).   DOI
17 M.T. Ganzerli Valentini, S. Meloni, and V.Maxia, "Adsorption of monovalent ions on zinc ferrocyanide", J. Inorg. Nucl. Chem., 34, 1427 - 1436 (1972).   DOI
18 H.M. Yang, S.C. Jang, S.B. Hong, K. W.Lee, J.K. Moon, Y.S. Huh, and B.K. Seo "Copper ferrocyanidefunctionalized magnetic adsorbents using polyvinylpyrrolidone-coated $Fe_3O_4$ nanoclusters for the removal of radioactive cesium", J. Nanosci. Nanotechnol., 16, 10864-10868 (2016).   DOI
19 K.S. Hwang, C.W. Park, S.B. Hong, K.W. Lee, B.K. Seo, S.J. Park, and H.M. Yang, "Highly efficient removal of radioactive cesium by sodium-copper hexacyanoferrate-modified magnetic nanoparticles", Colloids Surf. A., 516, 375-382 (2017).   DOI
20 D.S. Yang, "Copper ferrocyanide functionalized coreshell magnetic silica composites for the selective removal of cesium ions from radioactive liquid waste", Graduate School of Kyungpook National University, Master of Engineering Thesis (2014).
21 S. Singh, K.C. Barick, and D. Bahadur, "Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens", J. Hazard. Mater., 192, 1539-1547 (2011).   DOI
22 R. Greenwood, "Review of measurement of zeta potentials in concentrated aqueous suspensions using electroacoustics", Adv Colloid Interface Sci., 106, 55-81 (2003).   DOI
23 D. Hanaor, M. Michelazzi, C. Leonelli, and C.C. Sorrell, "The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of $ZrO_2$", J. Eu Ceram Soc., 32, 235-244 (2012).   DOI
24 F.H. Bijarbooneh, Y. Zhao, J.H. Kim, Z. Sun, V. Malgras, S.H. Aboutalebi, Y.U. Heo, M. Ikegami, and S.X. Dou, "Aqueous colloidal stability evaluated by zeta potential measurmnr and Resultant $TiO_2$ for superior photovoltaic performance", J. Am. Ceram. Sco., 96(8), 2636-2643 (2013).   DOI
25 M. Ishizaki, S. Akiba, A. Ohtani, Y. Hoshi, K. Ono, M. Matsuba, T. Togashi, K. Kananizuka, M. Sakamoto, A. Takahashi, T. Kawamoto, H. Tanaka, M. Watanabe, M. Arisaka, T. Nankawad, and M. Kurihara, "Proton-exchange mechanism of specific $Cs^+$ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules", Dalton Trans., 42, 16049-16055 (2013).   DOI