• Title/Summary/Keyword: Neumann boundary condition

Search Result 62, Processing Time 0.028 seconds

NON-ITERATIVE DOMAIN DECOMPOSITION METHOD FOR THE CONVECTION-DIFFUSION EQUATIONS WITH NEUMANN BOUNDARY CONDITIONS

  • Younbae Jun
    • East Asian mathematical journal
    • /
    • v.40 no.1
    • /
    • pp.109-118
    • /
    • 2024
  • This paper proposes a numerical method based on domain decomposition to find approximate solutions for one-dimensional convection-diffusion equations with Neumann boundary conditions. First, the equations are transformed into convection-diffusion equations with Dirichlet conditions. Second, the author introduces the Prediction/Correction Domain Decomposition (PCDD) method and estimates errors for the interface prediction scheme, interior scheme, and correction scheme using known error estimations. Finally, the author compares the PCDD algorithm with the fully explicit scheme (FES) and the fully implicit scheme (FIS) using three examples. In comparison to FES and FIS, the proposed PCDD algorithm demonstrates good results.

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

A FINITE ELEMENT METHOD USING SIF FOR CORNER SINGULARITIES WITH AN NEUMANN BOUNDARY CONDITION

  • Kim, Seokchan;Woo, Gyungsoo
    • East Asian mathematical journal
    • /
    • v.33 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • In [8] they introduced a new finite element method for accurate numerical solutions of Poisson equations with corner singularities, which is useful for the problem with known stress intensity factor. They consider the Poisson equations with homogeneous Dirichlet boundary condition, compute the finite element solution using standard FEM and use the extraction formula to compute the stress intensity factor, then they pose a PDE with a regular solution by imposing the nonhomogeneous boundary condition using the computed stress intensity factor, which converges with optimal speed. From the solution they could get accurate solution just by adding the singular part. This approach works for the case when we have the reasonably accurate stress intensity factor. In this paper we consider Poisson equations defined on a domain with a concave corner with Neumann boundary conditions. First we compute the stress intensity factor using the extraction formular, then find the regular part of the solution and the solution.

ERROR ESTIMATES OF NONSTANDARD FINITE DIFFERENCE SCHEMES FOR GENERALIZED CAHN-HILLIARD AND KURAMOTO-SIVASHINSKY EQUATIONS

  • Choo, Sang-Mok;Chung, Sang-Kwon;Lee, Yoon-Ju
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.6
    • /
    • pp.1121-1136
    • /
    • 2005
  • Nonstandard finite difference schemes are considered for a generalization of the Cahn-Hilliard equation with Neumann boundary conditions and the Kuramoto-Sivashinsky equation with periodic boundary conditions, which are of the type $$U_t\;+\;\frac{{\partial}^2}{{\partial}x^2} g(u,\;U_x,\;U_{xx})\;=\;\frac{{\partial}^{\alpha}}{{\partial}x^{\alpha}}f(u,\;u_x),\;{\alpha}\;=\;0,\;1,\;2$$. Stability and error estimate of approximate solutions for the corresponding schemes are obtained using the extended Lax-Richtmyer equivalence theorem. Three examples are provided to apply the nonstandard finite difference schemes.

AN SDFEM FOR A CONVECTION-DIFFUSION PROBLEM WITH NEUMANN BOUNDARY CONDITION AND DISCONTINUOUS SOURCE TERM

  • Babu, A. Ramesh;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.31-48
    • /
    • 2010
  • In this article, we consider singularly perturbed Boundary Value Problems(BVPs) for second order Ordinary Differential Equations (ODEs) with Neumann boundary condition and discontinuous source term. A parameter-uniform error bound for the solution is established using the Streamline-Diffusion Finite Element Method (SDFEM) on a piecewise uniform meshes. We prove that the method is almost second order of convergence in the maximum norm, independently of the perturbation parameter. Further we derive superconvergence results for scaled derivatives of solution of the same problem. Numerical results are provided to substantiate the theoretical results.

ESTIMATES FOR EIGENVALUES OF NEUMANN AND NAVIER PROBLEM

  • Deng, Yanlin;Du, Feng;Hou, Lanbao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1315-1325
    • /
    • 2021
  • In this paper, we firstly prove some general inequalities for the Neumann eigenvalues for domains contained in a Euclidean n-space ℝn. Using the general inequalities, we can derive some new Neumann eigenvalues estimates which include an upper bound for the (k + 1)th eigenvalue and a new estimate for the gap of the consecutive eigenvalues. Moreover, we give sharp lower bound for the first eigenvalue of two kinds of eigenvalue problems of the biharmonic operator with Navier boundary condition on compact Riemannian manifolds with boundary and positive Ricci curvature.

THE EIGENVALUE ESTIMATE ON A COMPACT RIEMANNIAN MANIFOLD

  • Kim, Bang-Ok;Kim, Kwon-Wook
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.19-23
    • /
    • 1995
  • We will estimate the lower bound of the first nonzero Neumann and Dirichlet eigenvalue of Laplacian equation on compact Riemannian manifold M with boundary. In case that the boundary of M has positive second fundamental form elements, Ly-Yau[3] gave the lower bound of the first nonzero neumann eigenvalue $\eta_1$. In case that the second fundamental form elements of $\partial$M is bounded below by negative constant, Roger Chen[4] investigated the lower bound of $\eta_1$. In [1], [2], we obtained the lower bound of the first nonzero Neumann eigenvalue is estimated under the condtion that the second fundamental form elements of boundary is bounded below by zero. Moreover, I realize that "the interior rolling $\varepsilon$ - ball condition" is not necessary when the first Dirichlet eigenvalue was estimated in [1].ed in [1].

  • PDF

MULTIPLE SOLUTIONS FOR EQUATIONS OF p(x)-LAPLACE TYPE WITH NONLINEAR NEUMANN BOUNDARY CONDITION

  • Ki, Yun-Ho;Park, Kisoeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1805-1821
    • /
    • 2016
  • In this paper, we are concerned with the nonlinear elliptic equations of the p(x)-Laplace type $$\{\begin{array}{lll}-div(a(x,{\nabla}u))+{\mid}u{\mid}^{p(x)-2}u={\lambda}f(x,u) && in\;{\Omega}\\(a(x,{\nabla}u)\frac{{\partial}u}{{\partial}n}={\lambda}{\theta}g(x,u) && on\;{\partial}{\Omega},\end{array}$$ which is subject to nonlinear Neumann boundary condition. Here the function a(x, v) is of type${\mid}v{\mid}^{p(x)-2}v$ with continuous function $p:{\bar{\Omega}}{\rightarrow}(1,{\infty})$ and the functions f, g satisfy a $Carath{\acute{e}}odory$ condition. The main purpose of this paper is to establish the existence of at least three solutions for the above problem by applying three critical points theory due to Ricceri. Furthermore, we localize three critical points interval for the given problem as applications of the theorem introduced by Arcoya and Carmona.

ON THE DISSIPATIVE HELMHOLTZ EQUATION IN A CRACKED DOMAIN WITH THE DIRICHLET-NEUMANN BOUNDARY CONDITION

  • Krutitskii, P.A.;Kolybasova, V.V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.9 no.1
    • /
    • pp.63-77
    • /
    • 2005
  • The Dirichlet-Neumann problem for the dissipative Helmholtz equation in a connected plane region bounded by closed curves and containing cuts is studied. The Neumann condition is given on the closed curves, while the Dirichlet condition is specified on the cuts. The existence of a classical solution is proved by potential theory. The integral representation of the unique classical solution is obtained. The problem is reduced to the Fredholm equation of the second kind and index zero, which is uniquely solvable. Our results hold for both interior and exterior domains.

  • PDF