1 |
R. P. Agarwal, Difference equations and inequalities, Monographs and Textbooks in Pure and Applied Mathematics, vol. 155, Theory, Methods, and Applications, Marcel Dekker Inc., New York, 1992
|
2 |
G. D. Akrivis, Finite element discretization of the Kuramoto-Sivashinsky equation, Numerical Analysis and Mathematical Modelling, Banach Center Publ., vol. 29, Polish Acad. Sci., Warsaw, 1994, pp. 155-163
|
3 |
S. M. Choo and S. K. Chung, Conservative nonlinear difference scheme for the Cahn-Hilliard equation, Comput. Math. Appl. 36 (1998), no. 7, 31-39
|
4 |
S. M. Choo, S. K. Chung, and K. I. Kim, Conservative nonlinear difference scheme for the Cahn-Hilliard equation. II, Comput. Math. Appl. 39 (2000), no. 1- 2, 229-243
DOI
ScienceOn
|
5 |
S. M. Choo, S. K. Chung, and Y. J. Lee, A Conservative difference scheme for the viscous Cahn-Hilliard equation with a nonconstant gradient energy coefficient, Appl. Numer. Math. 51 (2004), no. 2-3, 207-219
DOI
ScienceOn
|
6 |
C. M. Elliott and D. A. French, A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation, SIAM J. Numer. Anal. 26 (1989), no. 4, 884-903
DOI
ScienceOn
|
7 |
C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Ration. Mech. Anal. 96 (1986), no. 4, 339-357
|
8 |
D. Furihata, A stable and conservative finite difference scheme for the Cahn- Hilliard equation, Numer. Math. 87 (2001), no. 4, 675-699
DOI
ScienceOn
|
9 |
A. V. Manickam, K. M. Moudgalya, and A. K. Pani, Second-order splitting combined with orthogonal cubic spline collocation method for the Kuramoto- Sivashinsky equation, Comput. Math. Appl. 35 (1998), no. 6, 5-25
DOI
ScienceOn
|
10 |
J. C. Lopez Marcos and J. M. Sanz-Serna, Stability and convergence in numerical analysis. III. Linear investigation of nonlinear stability, IMA J. Numer. Anal. 8 (1988), no. 1, 71-84
DOI
|
11 |
R. E. Mickens, Applications of nonstandard finite difference schemes, World Scientific, New Jersey, 2000
|
12 |
T. Ortega and J. M. Sanz-Serna, Nonlinear stability and convergence of finite- difference methods for the 'good' Boussinesq equation, Numer. Math. 58 (1990), no. 2, 215-229
DOI
|
13 |
E. Tadmor, The well-posedness of the Kuramoto-Sivashinsky equation, SIAM J. Math. Anal. 17 (1986), no. 4, 884-893
DOI
|
14 |
D. Furihata,, Finite difference schemes for . J. Comput. Phys. 181-205
|
15 |
C. M. Elliott and D. A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math. 38 (1987), no. 2, 97-128
DOI
|
16 |
G. D. Akrivis, Finite difference discretization of the Kuramoto-Sivashinsky equation, Numer. Math. 63 (1992), no. 1, 1-11
DOI
|