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A HARNACK INEQUALITY FOR THE HEAT
EQUATION ON A COMPACT RIEMANNIAN
MANIFOLD WITH NON-CONVEX BOUNDARY

DonG Pyo CHI AND JIN HonGg KM

ABSTRACT. In this article we prove a Harnack inequality for the
positive solutions of the heat equation with Neumann boundary con-
dition for a compact Riemannian manifold with possibly non-convex
boundary.

1. Introduction

Let M be an n-dimensional compact Riemannian manifold with bound-
ary OM. Let g = (gi;) be a Riemannian metric on M. Then in local
coordinates (z,,...,z,) the Laplace operator A is given by

Z ax,(‘/_ 9”

1,_11

In this paper we are going to consider positive solutions of the heat
equation

0
(1) (A - a)u(z, t) = 07

on M x [0, 00).

In their paper [2] P. Li and S. T. Yau proved the Harnack inequality
for the positive solutions of (1) with Neumann boundary condition, i.e.,
%4 = 0 on OM x (0,00), for M with convex boundary. The purpose of
this paper is to show a Harnack inequality for positive solutions of (1)
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with Neumann boundary condition for M with boundary OM satisfying
weaker condition than convexity, i.e., interior rolling e-ball condition.

Following the idea in [2] (See also [3]), the basic strategy of getting
our Harnack inequality is to use the auxiliary function introduced by R.
Chen [1] and a modified function G in order to get a new gradient esti-
mate for M with boundary OM satisfying interior rolling e-ball condition
(See Section 3 for more details).

More precisely, we show the following results:

THEOREM 1.1. Assume that Ricci(M) > —k (k > 0), the second
fundamental form elements of OM > —H (H is non-negative constant),
and the positive solution u of the heat equation (1) satisfies the Neumann
boundary condition, i.e., g% =0 on M x(0,00). Let @ > 1 be a constant.
Then, we have for any constant 3 such that « > 3 > 1 and € a sufficiently
smaJI positive constant less than or equal to ﬂ 1

Vul? w _ n(l+ H)a? na nalH?®  Bk(1+ H)
WA _ e A
u? Y= 2t (C2+ 2(a—ﬂ)+ a—pf

)7

where
2(n—1)H(3H +1) + HBH +1)

C, =
€ €2

REMARK. When the boundary is convex, i.e., H = 0, this gradient
estimate implies the estimate obtained by P. Li and S. T. Yau [2], [3] by
letting B approach 1. '

Using this gradient estimate, it is immediate to get the following Har-
nack inequality:

THEOREM 1.2. Under the same assumption as in Theorem 1.1, we
have the following: fora > > 1, 1,20 € M, 0 < t; < t3 < 00,

ty rely ad’(z1,T3) na na?H?
ot <utent) () T el TG e
ﬂk(l + H) _

388



A Harnack inequality

REMARK. When the boundary is convex, i.e., H = 0, our Harnack
inequality again implies the Harnack inequality obtained by P. Li and
S.T. Yau 2], [3] by letting 8 approach 1.

This paper is organized as follows. In Section 2, we give the definition
of interior rolling e-ball condition and a variant of Laplacian Comparison
Theorem which is necessary to show Theorem 1.1. In Section 3, we give a
proof of a gradient estimate (Theorem 1.1) which will be crucially used to
get the Harnack inequality in Theorem 1.2, and a proof of Theorem 1.2.

2. Definition and Laplacian Comparison Theorem

In this section we recall the definiton of interior rolling e-ball condition
and prove two lemmas which are necessary to show Theorem 1.1.

We begin with the definition of interior rolling e-ball condition. We
say that OM satisfies the interior rolling e-ball condition if for each point
p € OM, there is an open geodesic ball B, (¢/2) at ¢ € M such that
{p} = B,(¢/2) N M and B,(e/2) C M.

Next we state a lemma whose statement and proof are simliar to those
in [2]. Thus, we leave its proof to the reader.

LEMMA 2.1. Assume that Ricci(M) > —k and u is a positive solution
of (1) on M x [0,00). For a, 3 > 0, let

F(z,t) = t(BIVfI’ — afs),
where f = logu. Then, we have
g 203t 9 9
(A= Z)F 2 =2Vf-VF+—(IVfI - f)
~ (BIVS? - af;) - 2kBt|Vf[*.

Finally, in order to prove Theorem 1.1 we need a variant of Laplacian
Comparison Theorem. This lemma was already stated in 1] without
proof. For the sake of completeness, we give its detail proof here.

LEMMA 2.2. Let M be an n-dimensional compact Riemannian mani-
fold with boundary OM and let N be the n-dimensional simply-connected
space of constant sectional curvature K; > 0 with boundary ON satis-
fying constant mean curvature —H (H > 0). Assume that the sectional
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curvature K; of M is less than or equal to Ks and the second funda-
mental form elements of OM > —H. Let p)y and py be the distance
functions with respect to some points pyy € OM and py € ON, respec-
tively. If x € M and py is differentible at z, then for any y € N with

pn(y) = pu(z),

H+ VK; tan(to\/fg)
1-— 7% tan(to\/fg) ’

Apu(z) 2 —(n—1)

. . H
provided that 0 < tp < ﬁf?} is a real number such that 75 tan(tox/—l? 5)
is not equal to 1, where t; is the distance from py to y.

Proof. We first note that the extension of the index theorem to sub-
manifolds enables us to prove Laplacian Comparison Theorem for the
distance function from some fixed point on the boundary [5]. Hence, the
problem of computing Apy can be reduced to that of finding a Jacobi
field along a geodesic.

Now, let {€;}?; be an orthonormal basis at py such that {% =e, and
S,.(0) is diagonalized, where « : [0,2)] — N is a geodesic parametrized
by arc-length from py to y, and S denotes the second fundamental form.
Denote by {e;(t)}, parallel translate of {e;}?_; along ~.

As in the proof of Laplacian Comparison Theorem (3], we can find
Jacobi fields X; along 7 such that

(a) Xi(v(t)) = ei(v(to))
(b) Xi(+(0)) € T,,ON
(©) Sn@(X:i(0) — (3X:)(0) € (T,,0N)*

foreachi=1,... ,n—1.

Since N has constant sectional curvature K5 > 0 and < f(i, e; >"=
—-K; < X’,—,ej >(G=1,...,n—1)foreachi=1,... ,n — 1, its general
solution of X; is given by

(2) z_:(aj sin(VKst) + b; cos(VK;t))e;(t).
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Under initial conditions for X;, we get

a; = bj=0,j#4,

-H
a, VK; cos(\/—I?gto) — Hsin(\/I?,;to)’
" VKs

VK5 cos(vKsto) — Hsin(vVKsty)’

- . H
Prowded that 0 <ty < WWITE is a real number such that v/ tan(to\/f 5)
is not equal to 1. Set

A=VK; cos(\/fgto) — Hsin(\/?,;to).

Now, at y,

to

Hess(pn)(ei, €:) = %XiF— < R(X:;, ¥, X; > dt
)
+ < 8,,0)(X:(0)), X:(0) >

to
_ / %(H"’K;cos(hfl?‘;t)+2HK53/2sin(2\/-Kst)

HK;

g2
K A?

_H+\/—5tan (tovV'Ks5)
1- 7% tan(tyvVKs)

Hence, we get

H + VE; tan(toVEs)
1- 7%; tan(tovVK;)

The index comparison theorem in [5] completes the proof. O

Apn(y) =—(n—1)

3. Proof of Theorems

In this section we prove Theorems 1.1 and 1.2. Since their proofs
are similar to those in [2], we will indicate only major steps which are
essential in understanding our proof.
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Proof of Theorem 1.1 and 1.2. To overcome the non-convexity of the
boundary, we will use the auxiliary function which was introduced in [1].
Thus, choose 1 as a non-negative C? function defined on [0, co) such that
% is less than or equal to H on [0,1/2) and is H on [1/2, 00) satisfying

$(0) =0, 0 <y'(r) <2H, ¥/(0) = H, ¢"(r) 2 —H.

o) = ¥ (i—)) ,

where r(z) denotes the distance function between z € M and boundary
oM.

We define fora > 3> 1

G(z,t) = (1 + p(2))F (2, 1),

where F(z,t) = t(8|Vf]? — af;), and f = logu.

We assume that |V f|? — af; is positive (Otherwise, the theorem holds
trivially). By the compactness of M x [0, T], G(z, t) attains its maximun
at some point p = (zg,%) € M x [0,T]. First we show that zo ¢ OM.
Suppose that o € OM. At p we may choose an orthonormal basis {e;}32,
at zg such that e, = %. Then, by the maximun principle, we get

aG@)

Set

This implies, at p,

196

G Ov

2 Z] =1 f?f?"
BIVF: —af;

_H 255N haf,
e BIVFPE- O‘ft
H Lol \7i 2Ehu Vf|

«  P-ri

H 2H

<-4 <
- +t5-1s0
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provided we choose 0 < € < g—g—l But this is a contradiction, which
implies that zy ¢ OM.

Now, we are going to get a gradient estimate for the positive solution
u at the interior point p. From now on, all computaions will be at p,
unless stated otherwise. Since G attains its maximun at p, we have

0=VG =FVep+ (1+¢)VF,

g

Let M (e) = {x € M|p(z) < €} and K be the upper bound of the sec-
tional curvature in @M (e). As in [1], if we choose € so that v/ K; tan(ev'K;) <
12 and V%tan(e\/f{—g) < 1 and we use Lemmas 2.1 and 2.2, starting
from the second equation of (3) it is not difficult to get

A 2|Vl
@ 0> 1+ ¢)F(-Cy 1 +o

F PV AP - f)? -~ 2kB0V £

where

— 1J;(p)+2(1+<,a)FV(1+<,o)-Vf

on—1)HGBH+1) H
+ 5.
€ €

If we use J—l‘%— < 4 and multiply by ¢ it follows from (4) that

Ci=

0> (14 @) F(~Cyt — (1+ H)) — gt(l + ) 2RIV S|

{[(1 +) (VS = £l — nk(1+ @)V},

where Cy = C’1 + 8
Set y = (1+ w)ﬂIVfl"’ and z = (1+ o) f,. Using B(1+ @)*|Vf? <
(1+ H)y and y"*(y — az) = £1+%ﬁag,ﬂl/QFIVfl, from (5) we get

0> (1+@)F(—Cot—(1+H)) + g:;[(ﬁ“y — 2 —nk(1+H)y

©
- gy — az)
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Finally, using a simple relation %;y —z=(y—a2)+ (%)y and a simple
inequality az? — bz > —% (a,b > 0), from (6) we get

2t2 1 2
0> (1+@)F(-Cot—(1+ H)) + 7[;@ — az)
n’?FR*(1+ H?  n?®H? oz
4(a — B)? 2(a — B)e? (v )
=(1+@)F(—Cat — (1 + H)) + 51—2((1 + p)F)?
(7) _no?fkP(1+ H?  noH%
2(a—pB)? (a —B)e
n?c?H%

2
= WGQ —[(1+ H)+ Cat + (a——ﬂ_)e—z]G

5(1+)F

3 na?(B2k(1 + H)t?
2a—-pp2
where we used the relation t(y — az) = (1 + ¢)F in the second equality.
Using the relation v# + ¢ < b+ c (b,c > 0), (7) yields
no’H?t  Bk(1+ H)t
@ Be " @ p

Since F(z,T) < (1+ ¢)F(z,T) < (1 + ¢)F(p) and T is arbitrary, we
have the desired inequality.

2
GS%{(I+H)+C¢+

For the proof of Theorem 1.2, using the newly made gradient estimate
and the method in [2], it is easy to get the Harnack inequality for the
positive solutions of the heat equation (1) on M x [0, 00) with Neumann
boundary condition in case of M having boundary OM satisfying the
interior rolling e-ball condition (See {2], [3] for details). a

Note added in proof. We have recently learned that J. Wang indepen-
dently has proved similar results in [4]. But we believe that results in
this paper are true generalizations of Li and Yau'’s results. O

References

[1] R. Chen, Neumann eigenvalue estimate on a compact Riemannian manifolds,
Proc. Amer. Math. Soc. 108 (1990), 961-970.

394



A Harnack inequality

[2] P. Li and S. T. Yau, On the parabolic kernel of the Schrédinger operator, Acta
Math. 156 (1986), 153-201.

[3] R. Schoen and S. T. Yau, Lectures on Differential Geometry, International Press,
1994.

[4] J. Wang, Global Heat Kernel Estimates, Pacific J. Math. 178 (1997), 377-398.

[6] F. W. Warner, Extension of the Rauch comparison theorem to submanifolds,
Trans. Amer. Math. Soc. 122 (1966), 341-356.

DoNG Pyo CHi, DEPARTMENT OF MATHEMATICS, SEOUL NATIONAL UNIVERSITY,
SEOUL 151-742, KOREA
E-mail: dpchi@math.snu.ac.kr

JIN HONG KIiM, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA,
BERKELEY, CA 94720, U.S.A.
E-mail: jinkim@math.berkeley.edu

395



