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ON THE DISSIPATIVE HELMHOLTZ EQUATION IN A CRACKED
DOMAIN WITH THE DIRICHLET-NEUMANN BOUNDARY
CONDITION

P.AXRUTITSKIIL, V.V.KOLYBASOVA

ABSTRACT. The Dirichlet-Neumann problem for the dissipative Helmholtz equation
in a connected plane region bounded by closed curves and containing cuts is studied.
The Neumann condition is given on the closed curves, while the Dirichlet condition
is specified on the cuts. The existence of a classical solution is proved by potential
theory. The integral representation of the unique classical solution is obtained. The
problem is reduced to the Fredholm equation of the second kind and index zero,
which is uniquely solvable. Our results hold for both interior and exterior domains.

1. INTRODUCTION

We consider a boundary value problem for the dissipative Helmholtz equation in a
2-D multiply connected domain bounded by closed curves and open arcs (cracks or
cuts). The domain may be exterior or interior. The Neumann boundary condition is
given on the closed curves, while the Dirichlet condition is posed on the cuts. Problems
in domains with cuts are used in applied sciences to model physical processes in cracked
domains. Cuts model cracks, wings, screens, spits, wavebreackers in mechanics and
engineering. Problems with mixed boundary conditions were not studied in cracked
domains for the Helmholtz equation by rigorous mathematical methods before, though
these problems are important for applications. Dirichlet and Neumann problems for the
dissipative Helmholtz equation in cracked domains were studied in [5,6] by the boundary
integral equation method. In the present paper we extend the approach developed in
[5,6] to the problem with the mixed Dirichlet-Neumann boundary condition. We obtain
an integral representation for a solution of the problem in the form of potentials and
reduce the problem to a uniquely solvable Fredholm integral equation of the second
kind in the appropriate Banach space. Our approach is constructive since our integral
equation can be computed by a standard code as well as a solution of the problem (7],
so the results of the paper can be used for a numerical simulation in cracked domains.
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The Dirichlet problem for the Helmholtz equation outside cuts in a plane has been
studied in [3,10,11}.

2. FORMULATION OF THE PROBLEM

By a simple open curve we mean a non-closed smooth arc of finite length without
self-intersections [4].

Let 7 be a set of curves, which may be closed and open. We say that v € C?* (or
v € C%0 ) if curves v are of class C?* (or C*0 ), where the Holder exponent X € (0, 1].

In the plane z = (z1,12) € R? we consider the multiply connected domain bounded
by simple open curves I'},...,T}, € C**, X € (0,1] and simple closed curves

2 2
r3,..,r%, e c*°,

so that the curves do not have common points, in particular, end-points. We shall
consider both the case of an exterior domain and the case of an interior domain, when
the curve I'? encloses all other. We put

N1 N2
=, r=ri, r=rtur
n=1 n=1

The connected domain bounded by I'? and containing I'! will be called D, so that
0D =T2; T! C D. We assume that each curve I'¥ is parametrized by the arc length s:
Tk = {z: z=x(s) = (z1(5),22(s)), s € [ak,bE]}, n=1,..., Nk, k=1,2, so that
al <bl < ..<a}, <by <al<b<.. <a}, <b}, and the domain D is to the
right when the parameter s increases on I'2. Therefore points z € I' and values of the
parameter s are in one-to-one correspondence except a2, b2, which correspond to the
same point = for n = 1,..., No. Below the sets of the intervals on the Os axis

Ny N2 2
U[a}t,bh], U a 021, U U ak b’C
n=1 n=1 k=1n=1

will be denoted by I'', T'? and I also. We put
COTY) = {F(s): Fls) € C°lan,b), Flay) = F(b3)}

and C°(I'%) = ﬂ co(r2).

The tangent vector to I at the point z(s) we denote by 7, = (cos a(s), sina(s)),
where cos a(s) = 7/ (s), sina(s) = zh(s). Let n; = (sina(s), —cosa(s)) be a normal
vector to [ at z(s). The direction of n, is chosen such that it will coincide with the
direction of 7 if n, is rotated anticlockwise through an angle of 7/2. So, n; is an
inward normal to D on I'2,
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We consider I'! as a set of cuts. The side of I'' which is on the left, when the
parameter s increases will be denoted by (I'!)T and the opposite side will be denoted
by (T'1)~.

We say, that the function u(z) belongs to the smoothness class K if

1) u € CO(D\TH)NC?(D\IM), and u(z) is continuous at the end-points of the cuts rt,

2) Vu € CO(D\IT\I'2\ X), where X is a point-set, consisting of the end-points of I'! :

M
X = (za}) uz(®))),

n=1

3) in the neighbourhood of any point z(d) € X for some constants C > 0, ¢ > —1
the inequality

1) [Vul < Clz —(d)[,

holds, where z — z(d) and d = a} or d = b}, n=1,..., Ny,

4) there exists a uniform for all z(s) € T2 limit of (n;, Vzu(£)) as & € D\I'! tends
to = € I'? along the normal n,.

Remark. In the definition of the class K we consider I'! as a set of cuts in the
domain D. According to this definition, u(z) and Vu(z) are continuously extensible on
cuts T\ X from the left and from the right, but their values on I'\X from the left and
from the right may be different, so that u{z) and Vu(z) may have a jump across \X.

Let us formulate the Dirichlet-Neumann problem for the dissipative Helmholtz equa-
tion in the domain D\I'! which may be interior or exterior.

Problem U. Find a function u(z) of the class K which satisfies the Helmholtz equa-

tion

(2a) Uz, 2, (Z) + Ugye, () + fPu(z) =0, z € D\I'', B =const, ImS >0,

and the boundary conditions

Gu(z()) | _ F(s).
(911:5 F2

If D is an exterior domain, then we add the following condition at infinity

(2 w(z(s)lenyr = FF(s),  ul@(s)ry- = F(s),

(20) u=o(lz|""?), |Vu(z)| = ollz|™?), l|z|=1/2?+13 - 0.

All conditions of the problem U must be satisfied in the classical sense. By 0u/0n,
on I'? we mean the limit ensured in the point 4) of the definition of the smoothness
class K.

On the basis of the energy equalities [1,8] we can easily prove the following assertion.
Theorem 1. If T € C?*, X € (0,1], I'? € C?°, then the problem U has at most
one solution.

The theorem holds for both interior and exterior domain D.
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3. INTEGRAL EQUATIONS AT THE BOUNDARY

Below we assume that

(3a) F¥(s),F(s) e CYAIY), F(s) e C°(I?), Xe(0,1],

(3b) Ftal)=F(al), F*(,)=F (b)), n=1.,Ni.

n

Note that the Holder exponent X in the smoothness conditions for the arcs I'! and the
Holder exponent X in (3a) for the functions F*(s), F~(s) are assumed to be the same.
If these exponents are different, then as A we can take the smallest one.

If Bi(I'!), By(I'?) are Banach spaces of functions given on I't and I'?, then for
functions given on I' we introduce the Banach space Bi(I'') N By(I'?) with the norm

I8, eynse @2y = N-lsy 0y + 1-llsy 2y -
By [rk .- do we mean

We consider the angular potential from [3] for the equation (2a) on I'!

(@) nle) = § [ o)V (e, 0)do
T
The kernel V(z,0) is defined on each curve I'} (n =1,...,N1) by the formula

V(z,0) _/——H“>Mx—man@, o € [al,bl],

where H(()l)(z) is the Hankel function of the first kind [9):

L oo L\ —1/2
’H(()l)(z) = v2exp(iz — in/4) /exp(—t)t—l/2 (1 + ;—t) dt,
0

Tz z
y=y(&) = @1(6),32(9), |z -yl = V(21— 51())* + (@2 — 12(£))*-

Below we suppose that v(0) belongs to C%*(I'!) and satisfies the following additional
conditions

by
(5) ‘ /V(a) do=0, n=1,.,N;.
ag,
As shown in {3], for such v(o) the angular potential v1[v](z) belongs to the class K.
In particular, the condition (1) is satisfied for any ¢ € (-1 0) Moreover, integrating
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v1[v](x) by parts and using (5) we express the angular potential in terms of a double
layer potential
i 0
(6 wll(e) == [ o)l (Bl —y(o)) doy
ny
!
with the density

a

(7) o) =/u(§) d, oclalbl], n=1,..,N.

ap,

Consequently, v;[v](z) satisfies both equation (2a) outside I'" and the condition at
infinity (2c).
Let us construct a solution of the problem U . This solution can be obtained with

the help of potential theory for the Helmholtz equation (2a). We seek a solution of the
problem in the following form

Q uly, () = wl)(z) + wlul@)
where v [v](z) is given by (4), (6) and
Q wlil(z) = wilu(@) + wlul(a) |
o) = § [ oM (Ble - o)) do
. Fl
walilz) = 1 [ WH Bl ~y(o)) do
I"2

As noted above, we shall look for the density (o) satisfying the conditions (5) and
belonging to C* (T'!).

We shall seek u(s) from the Banach space Cq“’(Fl) nCYr?), we (0,1, q€i0,1)
with the norm ||| ge (r1)nco(rzy = e oy + |-l ore) - We say, that u(s) € Ce(rt) if

Ny
w(s) H |s - qu |3 - b;'q e Co (T,

n=1

where C%%(T'!) is a Holder space with the exponent w and

Ny
u(s) I Is — anl*|s — bnf’

n=1

My o) =

Cow (Fl)

Tt can be checked directly with the help of [3], that for such p(s) the function wi[u](z)
satisfies equation (2a) outside I'! and belongs to the class K. In particular, the inequal-
ity (1) holds with e = —q if ¢ € (0,1). The potential wo[u](z) satisfies equation (2a)
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outside I'? and belongs to the class K [3,8]. In the case of the exterior domain D the
function (8) satisfies the condition at infinity (2c). Therefore, the function (8) satisfies
all the conditions of the problem except the boundary conditions (2b).
To satisfy the boundary conditions we put (8) in (2b) and arrive at the system of
the integral equations for the densities u(s), v(s)
1 1

(10a) £2pls) + 5 / o)V (2(s),0) do+

!

45 [ (Bla(s) —yi@N) do+

I‘l
+5 [ WM Blas) ~sloW do = F¥(s), s T,
I‘2
) ] [z ae)o)do + 5 [ wlo) 5t (Bla(s) — vio)) do-
It » Tt

—3006)+ 5 [ o) o (Ba(s) - slo)do = F(5), s €T
Ny
F2
where p(s) is defined in terms of v(s) in (7).

To derive limit formulae for the angular potential we used its expression in the form
of a double layer potential (6).

Equation (10a) is obtained as z — z(s) € (I'')* and comprises two integral equa-
tions. The upper sign denotes the integral equation on (I'')*, the lower sign denotes
the integral equation on (I'!)~.

In addition to the integral equations written above we have the conditions (5).

Subtracting the integral equations (10a) and using (7) we find

p(s) = (F*(s) = F(s)) € CV}(I),

(1) V(s) = (F*(s) = F~()) € CON(IY),  F™(s) = - F*(s).

We note that v(s) is found completely and satisfies all required conditions, in par-
ticular, (5). Hence, the angular potential (4), (6) is found completely as well.
We introduce the functions fi(s) and fa(s) by the formulae

(12a) fi(s) = = (F¥(s) + F~(s)) — % / (F'™*(0) — F'"(0)) V (2(s),0) do, s€ !

I

N —
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(120) ) = Pl = 5 [ (o) 5V (ol ) do =
ri
= F(s)+ / p(a>a%5g;”8” (Blz(s) - y(o))) do, s €T

T
As shown in [3], if s € I'', then fi(s) € CLPo(I'!) where pp = A if 0 <A < 1 and
po =1 — ¢ for any ¢ € (0,1) if A = 1. Clearly, fo(s) € C%(T'?).
Adding the integral equations (10a) and taking into account (10b) we obtain the
integral equations for u(s) on I'* and I'?

(130) W)l = 5 [ wE)HS (Bl2(s) (o)) do

I"l

+3 [ oy (Bla(s) — ylo) do = fils), 5T

T2

(03)  —guls)+ 1 [ 4ot Blale) ~u(oN do = fols), s €T,
r fo

where fi(s) and fo(s) are given in (12), and the limit values of the function (9) as

z — z(s) €Y, z € D are denoted by w(u)(z(s))|r -

Thus, if u(s) is a solution of equations (13) from the space C;’(I‘l) NnC(r?), we (0,1],
q € [0,1), then the potential (8) with v/(s) from (11) satisfies all conditions of the prob-
lem U.

The following theorem holds.

Theorem 2. Let T € C?*, T'? € C?P and the conditions (8) hold. If the equations
(13) have a solution u(s) from the Banach space C’;’(I‘I) NnCcYUr?), we(0,1], ¢el0,1),
then a solution of the problem U is given by (8), where v(s) is defined in (11).

If s € I'2, then (13b) is an equation of the second kind. The kernel in the integral
term in (13b) is a continuous function for s € 2, o € I, because I'2 ¢ C*0 (see [3]
for details). If s € I'!, then (13a) is an equation of the first kind and its kernel has the
logarithmic singularity when s = o € I'!, because

o
(14) 1V (2) = }3 ln% + h(z),

where h(z) € C[0,+0o0). Moreover, as z = 0+ 0
h{(z) = const + O(z*Inz), HK(2)=0(zlnz), h"(z)=0(nz).

Our further treatment will be aimed to the proof of the solvability of (13) in the
Banach space C¥(I'!) N C%(T'?). Moreover, we reduce (13) to a Fredholm equation of
the second kind, which can be easily computed by classical methods.
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By differentiating (13a) on I'! in accordance with (4, sect.14], we reduce (13a) to the
following singular integral equation on I'!

(150) 2 while(o) = 5 [ nlo) UL 4y
Tt

+7 [ 1) geh (Bla(s) ~ y(@)) do+
T

+5 [ W ZHD Blats) - ol do = fils), seT?
I"2
where the function h(z) is defined by (14), and o(z,y) is the angle between the vector
Z{ and the direction of the normal n,. The angle ¢o(z,y) is taken to be positive if it
is measured anticlockwise from n; and negative if it is measured clockwise from n;.
Besides, @o(z,y) is continuous in z,y € T if z # y.
Equation (13b) on I'? we rewrite in the form

(156) u(s) + [ o) Aals,0)do = ~2fals), €T,
T
where .
Aals ) = —5 7D (Bla(s) - ylo)) € CO(T x ).

Remark. Evidently, f2(a2) = f2(b2) and Ag(a2,0) = Ap(b2,0) for any 0 € T

N»

(n = 1,...,Np). Hence, if p(s) is a solution of equation (15b) from C° (U [ai,bi]),
n=1

then, according to the equality (15b), u(s) automatically satisfies matching conditions

p(a2) = p(b2) for n = 1,..., Ny and therefore belongs to C°(I'?). This observation is
true for equation (13b) also and can be helpful for finding numerical solutions, since
we may abandon matching conditions u(a2) = u(b2) (n =1,...,Nz), which are fulfilled
automatically. .

We note that equation (15a) is equivalent to (13a) on I'! if (15a) is accompanied by
the following additional conditions

(16) wlpl(z(ay)) = filan), n=1,.,N .

The system (15), (16) is equivalent to the equations (13).
It follows from [3, lemma 3] that

e el
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Therefore we can rewrite (15a) in the form

(17 2o uluo(s) = 1 [ o) + [ )Y (s,0)do =

o—38
Tt T

=2fi(s), seTll
Lot s [L (Snen(she) 1
o) = {0 () HE o=k
+a b (Blals) —ulo))]| +

+ 3000 21D (B1a(6) - y(o) | € COM (T xT),

8(0)=0ifc e and 6(c) =1if o € T2, po=Aif0 <A <1and py=1—¢ for any
€0 € (0,1) if A =1 (see [3, theorem 6]).

where

4. THE FREDHOLM INTEGRAL EQUATION AND THE SOLUTION OF THE PROBLEM

Inverting the singular integral operator in (17) we arrive at the following integral
equation of the second kind [3], [4]:

1 N1—1
(18) N(S) -+ QT(SSF/ (U)Al(s 0’ dO'-l- z Gn5
_ 1 s 1
—Ql(s)q)l( ), SEF,
where
Ay(s,0) = —= ﬁ ooy, v, = -1 [ 2Dy,
Fl

Q:1(s) = 1_1[ (\/s —alv/bl — s’ sign(s — al.)
n=1

and Gy, ..., Gn, -1 are arbitrary constants.

It can be shown using the properties of singular integrals [2], [4], that ®1(s), Ai(s,0)
are Hoélder functions if s € I'!, o € I'. Consequently, any integrable on I'' and con-
tinuous on I'? solution of equation (18) belongs to CY’ /Z(Fl) with some w € (0,1}, and
below we look for x(s) on I'! in this space.

We put

Q(s) = (1 = 4(s)) Qu(s) + 8(s), sel.
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Instead of u(s) € C% /2(1‘1) N C%I'?) we introduce the new unknown function
Ba(s) = p(s)Q(s) € C™(I) N CO(I?)

and rewrite (18), (15b) in the form of one equation

Ni—1
(19) o ( +/u* JA(s,0)do + (1 -6 ZGns = ®(s serl,
r

where
A(s,0) = (1 = 8(s)) A1(s,0) + 8(s)Az(s,0),
B(s) = (1 - d(s)) 1(s) — 20(s) f2(s)-
To derive equations for Gy, ..., Gn,_1 we substitute u(s) from (18), (15b) in the
conditions (16), then in terms of u.(s) we obtain
Ni-1

(20) / Q@ HOMOWEE + 3 BanGn = Hry 1= 1o

where
1a(6) = —w [QTI(VA(, )] (z(ah)), Ha=-w[Q'()2()] (z(ap)) + fi(an),
(21) Bum = —w [Q71() (1 - 6()) ()] (z(an))-

By - we denote the variable of integration in the potential (9).

Thus, the system of equations (15), (16) for u(s) has been reduced to the system (19),
(20) for the function u.(s) and constants Gy, ..., G, —1. It is clear from our consideration
that any solution of system (19), (20) gives a solution of the system (15), (16).

As noted above, ®1(s) and A;(s,0) are Holder functions if s € I'!, o € I'. More
precisely (see [3], [4]), ®1(s) € COP(T), p = min{1/2,A} and A;(s,o) belongs to
C%?(T!) in s uniformly with respect to o € I'. We arrive at the following assertion.
Lemma 1. Let T € C?* X e (0,1], T'? € C?°, &(s) € COP(I'") N CO(?),
p = min{\, 1/2}. If p.(s) from CO(T) satisfies the equation (19), then

e (s) € COP(TH) N CO(T?).

The condition ®(s) € C%P(I'') N C°(I'?) holds if conditions (3) hold.
Hence below we shall seek . (s) from C%(T).
Since A(s,0) € C°(I" x T'), the integral operator from (19):

Ay = / 1(0)Q (0) (5, 0)do
T

is a compact operator mapping C°(I') into itself.
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We rewrite (19) in the operator form
(22) I+Ap.+PG=92 ,

where P is the operator of multiplication of the row P = (1 — é(s)) (s°, ..., sM-1) by

the column G = (Go,...,G N1—1)T- The operator P is finite-dimensional from Ey, into
C%(T) and therefore compact.

Now we rewrite equations (20) in the form
(23) InNG + Lps + (B - In)G=H ,

where H = (Hy, ..., Hn,)T is a column of N; elements, Iy, is the identity operator in
Ey,, Bisa N; x N; matrix consisting of the elements By, from (21). The operator
L acts from C%(T') into Ey;, so that Ly, = (L1fts, -, Ly pts) T, Where

Lt = [ QO O(©)dE ,  n=1,...,Ny.
T

The operators (B — I, ), L are finite-dimensional and therefore compact.

We consider the columns fi = ( lg ) , &= ( }{; ) in the Banach space

C°(T) x En, with the norm ||/1||(10(I‘)><E]\,1 = ”H*”co(r) + “G”EN1
We write the system (22), (23) in the form of one equation

.= A P

(24) I+R)p=92 , R=(L B"INI) ,
where I is an identity operator in the space C%(I") x E, . It is clear, that R is a compact
operator mapping C°(I") x Ey, into itself. Therefore, (24) is a Fredholm equation of
the second kind and index zero in this space.

Let us show that homogeneous equation (24) has only a trivial solution. Then, ac-
cording to Fredholm’s theorems, the inhomogeneous equation (24) has a unique solution
for any right-hand side. We shall prove this by a contradiction.

0
Let i° = ( g’{) ) € C°(T) x En, be a non-trivial solution of the homogeneous equa-

0
tion (24). According to the lemma 1, 0= He ) e 002D N CYI2) x Eny,
“’ G()

p = min{\,1/2}. Therefore the function p°(s) = pd(s)Q'(s) € Cf/Q(Fl) NC%Ir?) and
the column G° convert the homogeneous equations (18), (15b), (20) into identities. The
homogeneous identity (15b) is equivalent to the homogeneous identity (13b). Using the

homogeneous identities (18), (15b) we check, that the homogeneous identities (20) are
equivalent to

(25a) w [,uo] (z(al)) =0, n=1,..,N;.
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Besides, acting on the homogeneous identity (18) with a singular operator with the
kernel (s —t)~! we find that u0(s) satisfies the homogeneous equation (17) :

0
(25b) 75 [1°] (z(s))| =0.

s It
It follows from (25) that u0(s) satisfies the homogeneous equation (13a). Thus, p°(s)
satisfies the homogeneous equations (13). On the basis of theorem 2,

ul0, 1°%)(z) = w[u°)(x)
is a solution of the homogeneous problem U. According to theorem 1:
wpl)(z) =0, =z e D\I.

Using the limit formulae for normal derivatives of a single-layer potential on T'!, we
have

0 0
li O)(z) = po(s) = .
. x(sl)lg(l‘l)+ on. wlp'|(z) =p°(s) =0, s€

0 _ i
w['u ](:I)) z—)x(sl)rél(f‘l)‘ on

Hence, w[u®](z) = we[u®](z) = 0, z € D, and p(s) satisfies the homogeneous
equation (13b), which can be written as
@) -0+ 1 [ W0 D (Blals) —y(@N) o =0, seT?

Ny
I‘2

The Fredholm integral equation (26) is known in classical mathematical physics. We
arrive at (26) when solving the Neumann problem for the Helmholtz equation (2a) in
the domain D by the single layer potential. Since u°(s) € C° (I'?), we obtain from
properties of the single layer potential [8] that
(*) we [u°] (z) € C°(R\D) n C? (R*\D);
(**) there exists a uniform for all z € I' limit of (ng, Vsws () as # € R?\D

tends to z € I'? along the normal n,.

Moreover [8], the single layer potential wy[u®])(x) belongs to CO(R?), therefore

w2|F2 = (.

Note that wy {u°] (z) satisfies the following homogeneous Dirichlet problem in the do-
main R?\D:
Awy(x) + Brwy(z) =0, z € RA\D, Impg>0,
wZII‘Z =0.

Besides, wy [u°] (z) satisfies the conditions (2¢) as |z| — oo if R*\D is an exterior
domain. It can be shown by the method of energy equalities that there is only the
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trivial solution of this homogeneous Dirichlet problem if smoothness conditions (*),
(**) are imposed. Therefore,

wy [uo] () =0, z € R*\D,

so wy [1%] (z) = 0 in R2\I'2. Using the jump formula for the normal derivative of the
single layer potential on the integration curve, we obtain

lim (ng, Vaws [1°] (8)) — lim (ng, Viws [p°] (8)) =
& — z(s) € I'? & — z(s) €T?
# € R\D 2eD

=p%s)=0, selZ

Here the limits are understood along the normal according to the property (**) and
the point 4) of the definition of the class K. Therefore, the equation (26) has only the
trivial solution u°(s) = 0 in C%(T?).

Consequently, if s € T, then p9(s) = 0, p2(s) = p®(s)Q*(s) = 0 and it follows
from the homogeneous identity (18) for u°(s) and GJ, ..., G%, _; that

1

G® = (G),....G%, )T =o0.

Hence, 1% = 0 and we arrive at the contradiction to the assumption that fi° is a non-
trivial solution of the homogeneous equation (24). Thus, the homogeneous Fredholm
equation (24) has only a trivial solution in C°(T) x Ep;.

We have proved the following assertion.
Theorem 3. If ' € C?*, A€ (0,1], T? € C?°, then (24) is a Fredholm equation of
the second kind and index zero in the space CO(I') x Ey,. Moreover, equation (24) has

a unique solution fi = ( lg ) € CO(T") x Ey, for any & = < }{; ) € C%I) x En,.

As a consequence of the theorem 3 and lemma 1 we obtain the corollary.

Corollary. If T' € C?*, X € (0,1], T? € C?° then equation (24) has a unique

solution fi = ( 'lg > € COP(TH N C%T?) x En, for any
§ = ( : ) € CO2(I) N CO(T?) x En,
where p = min{\,1/2}.
We recall that ® belongs to the class of smoothness required in the corollary if
conditions (3) hold. Besides, equation (24) is equivalent to the system (19), (20).

As mentioned above, if the function p.(s) from C%(I'') N C%(T?) and the constants
Go,...,GN,—1 constitute a solution of system (19), (20), then

u(s) = pa(5)Q™(s) € O7,(T") N CU(T?)
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is a solution of system (15), (16), and therefore u(s) satisfies equations (13). We obtain
the following statement.

Lemma 2. If I'! € C?*, T? € C?° and the conditions (3) hold, then the equations (13)
have a solution u(s) from Cf/Q(Pl) N C%I?), p = min{1/2,A}. This solution is ez-
pressed by the formula p(s) = p.(s)Q~1(s), where p.(s) from COP(T'Y) N COT?) is
found by solving the Fredholm equation (24), which is uniquely solvable.

Remark. The solution of the equations (13) ensured by lemma 2 is unique in the
space C‘l"/"2 (T1) x C%(T'?) for any w, € (0, p]. The proof can be given by a contradiction
to the assumption that the homogeneous equations (13) have a nontrivial solution in
this space. The proof is almost the same as the proof of Theorem 3. Consequently,
the numerical solution of the equations (13) can be obtained by the direct numerical
inversion of the integral operator of the system (13). In doing so, Holder functions
can be approximated by continuous piecewise linear functions, which also obey Holder
inequality. The simplification for numerical solving the equations (13) is suggested in
the remark to the equation (15b) in the section 3.

On the basis of the theorem 2 we arrive at the final result.

Theorem 4. If T' € C?* T? ¢ C*° and conditions (3) hold, then the solution of
the problem U exists and is given by (8), where v(s) is defined in (11) and p(s) is a
solution of the equations (13) from Cf/z(l“l) N C%I?), p = min{1/2,A} ensured by
lemma 2.

It can be checked directly that the solution of the problem U satisfies condition (1)

with e = —1/2. Explicit expressions for singularities of the solution gradient at the end-
points of the open curves can be easily obtained with the help of formulae presented
in [3].

Theorem 4 ensures existence of a classical solution of the problem U when I'! € Cc?*,
I'? € C*° and the conditions (3) hold. The uniqueness of the classical solution follows
from the theorem 1. On the basis of our consideration we suggest the following scheme
for solving the problem U. First, we find the unique solution of the Fredholm equation
(24) from C°%(T) x Ey,. This solution automatically belongs to

cOP(r)ync%(I?) x Ey,, p=min{),1/2}.

Second, we construct the solution of the equations (13) from C? /2(1’1) N C%I?) by the
formula p(s) = ps(s)Q1(s). Finally, by substituting v(s) from (11) and p(s) in (8) we
obtain the solution of the problem U.
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