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NON-ITERATIVE DOMAIN DECOMPOSITION METHOD

FOR THE CONVECTION–DIFFUSION EQUATIONS WITH

NEUMANN BOUNDARY CONDITIONS

Younbae Jun

Abstract. This paper proposes a numerical method based on domain

decomposition to find approximate solutions for one-dimensional convec-
tion–diffusion equations with Neumann boundary conditions. First, the

equations are transformed into convection–diffusion equations with Dirich-

let conditions. Second, the author introduces the Prediction/Correction
Domain Decomposition (PCDD) method and estimates errors for the in-

terface prediction scheme, interior scheme, and correction scheme using

known error estimations. Finally, the author compares the PCDD algo-
rithm with the fully explicit scheme (FES) and the fully implicit scheme

(FIS) using three examples. In comparison to FES and FIS, the proposed

PCDD algorithm demonstrates good results.

1. Introduction

The convection–diffusion equation is a partial differential equation that de-
scribes the transport of a quantity such as heat or mass through a medium
under the influence of both diffusion and advection. Some examples of initial–
boundary value problems for the convection–diffusion equation with Neumann
boundary conditions are heat transfer in a rod, groundwater flow, and diffusion
in a slab.

We consider the one dimensional convection–diffusion equation of the form

ut + βux = γuxx, for (x, t) ∈ [0, 1]× [0, T ], (1)

with the initial condition

u(x, 0) = f(x), for x ∈ [0, 1], (2)

and the Neumann boundary conditions

ux(0, t) = g0(t) and ux(1, t) = g1(t), for t ∈ [0, T ], (3)
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where β and γ are given constants.
In recent years, significant attention has been devoted in the literature to

developing numerical schemes for convection-diffusion equations. Baźan [2] in-
troduced a highly accurate Chebyshev pseudospectral collocation method for
1D convection-diffusion equations. Eharhardt and Mickens [7] derived a new
nonstandard finite difference scheme, using the subequation method, for a class
of convection-diffusion equations with constant coefficients. Mohebbi and De-
hghan [9] applied a fourth-order compact finite difference approximation to
discretize spatial derivatives of one-dimensional heat and advection-diffusion
equations, using the cubic spline collocation method. Salkuyeh [10] consid-
ered the system of ordinary differential equations arising from discretizing the
convection-diffusion equation with respect to the space variable. Most of these
works focused on Dirichlet boundary conditions. In [5], authors developed an ac-
curate fourth-order compact finite difference scheme for solving the convection-
diffusion equation with Neumann boundary conditions.

On the other hand, with recent advancements in powerful parallel compu-
tational capabilities, developing efficient parallel algorithms has become a sig-
nificant challenge in computational mathematics. Domain decomposition (DD)
[6, 8, 11] is one efficient parallel technique. Chen and Yang [6] proposed a non-
overlapping domain decomposition algorithm for the Crank-Nicolson scheme
with implicit Galerkin finite element methods and explicit flux approxima-
tion. Jiang and Xu [8] applied a two-level additive Schwarz preconditioner with
overlapping domain decomposition. Yang [11] worked on non-iterative paral-
lel Schwarz algorithms based on overlapping domain decomposition. However,
few studies have explored Neumann boundary conditions of parabolic partial
differential equations under domain decomposition architecture.

In this paper, we propose a numerical scheme based on domain decomposi-
tion to find approximate solutions for the one-dimensional convection-diffusion
equation with Neumann boundary conditions, demonstrating the stability and
efficiency of the method. In Section 2, we propose a non-iterative DD algorithm
and analyze its stability. In Section 3, we provide numerical experiments and
discuss the efficiency of the method. We then conclude in Section 4.

2. Numerical scheme and Stability

In this section, we present our domain decomposition method for solving the
one-dimensional convection-diffusion equation with Neumann boundary condi-
tions (1)–(3) and analyze its stability. We employ a finite difference scheme to
discretize both the partial differential equation and its domain.

The domain [0, 1] × [0, T ] is covered by a mesh of grid lines xi = i∆x and
tn = n∆t, where ∆x = 1

L = h and ∆t = T
N = k, i = 0, · · · , L and n = 0, · · · , N

with the positive integers L and N . Let wn
i be the approximation of u(xi, tn).

The finite difference operators for each derivative of the convection–diffusion



DOMAIN DECOMP. FOR NEUMANN CONVECTION-DIFFUSION EQUATIONS 111

equation (1) at (xi, tn) are written as follows:

wn
t =

wn
i − wn−1

i

∆t
, wn

x =
wn

i+1 − wn
i−1

2∆x
, and wn

xx =
wn

i+1 − 2wn
i + wn

i−1

(∆x)2
.

The initial value problem with the Neumann boundary conditions (3) is de-
noted as the Neumann problem (1)–(3). In the Neumann problem, only the
derivatives on the boundary are specified, and the values on the boundary are
unknown. Therefore, the Neumann boundary condition is discretized in terms
of fictitious points as follows:

wn
1 − wn

−1

2∆x
= ux(x0, tn) = g0(tn) and

wn
L+1 − wn

L−1

2∆x
= ux(xL, tn) = g1(tn),

and hence

wn
−1 = wn

1 − 2∆x · g0(tn) and wn
L+1 = wn

L−1 + 2∆x · g1(tn). (4)

Solving the convection-diffusion equation with Neumann boundary condi-
tions can be accomplished easily using either the fully explicit scheme or the
fully implicit scheme, without resorting to domain decomposition. However,
these schemes come with certain limitations, either in terms of stability or ef-
ficiency. Let us take note of the existing finite difference representations and
stability considerations [1, 3] for the one-dimensional convection-diffusion equa-
tion.

Remark 1. The fully explicit scheme (FES) is conditionally stable for λ =
γ ∆t
∆x2 ≤ 1

2 :

FES: wn
t + βwn−1

x = γwn−1
xx . (5)

Remark 2. The fully implicit scheme(FIS) is unconditionally stable:

FIS: wn
t + βwn

x = γwn
xx. (6)

In this section and the following sections, we describe our domain decompo-
sition method and analyze its stability and efficiency in comparison to those of
FES and FIS. Initially, the spatial domain is decomposed into several non-
overlapping sub-domains. Subsequently, the problem defined on each sub-
domain is considered as an independent sub-problem that can be solved in
parallel. The proposed method consists of three major steps: interface predic-
tion, interior solver, and interface correction.

2.1. Interface prediction step: Dirichlet problem

To solve the decomposed sub-problems independently, it is necessary to esti-
mate the values of ux in advance at each interface point, and these values serve
as the Neumann boundary conditions for each sub-problem.

Throughout this paper, we assume that all the functions associated with the
Neumann problem (1)–(3) are continuous, and all partial derivatives are also
continuous. Let

q = ux,
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then the convection–diffusion equation (1) can be written as

qt + βqx = γqxx, for (x, t) ∈ [0, 1]× [0, T ], (7)

with the initial condition

q(x, 0) = fx(x), for x ∈ [0, 1], (8)

and the Neumann boundary conditions (3) become the Dirichlet boundary con-
ditions

q(0, t) = g0(t) and q(1, t) = g1(t), for t ∈ [0, T ]. (9)

Remark 3. The Neumann problem (1)–(3) of u(x, t) can be converted into the
Dirichlet problem (7)–(9) of q(x, t) provided that q = ux.

Suppose the entire domain is now decomposed into P sub-domains, with
H = 1/P . Let qni represent the approximation of q(xi, tn). Since the central
difference schemes for qxx(x, t) and qx(x, t) can be formulated as follows:

qx(x, t) =
q(x+H, t)− q(x−H, t)

2H
+O(H2)

and

qxx(x, t) =
q(x+H, t)− 2q(x, t) + q(x−H, t)

H2
+O(H2),

we define the central finite difference operators q̂nx and q̂nxx at the interface points
(xi, tn) as

q̂nx =
qni+LH − qni−LH

2H
and q̂nxx =

qni+LH − 2qni + qni−LH

H2
,

where qni+LH and qni−LH are the unknown values at the adjacent interface points.

Remark 4. It is evident that q̂nx = qx +O(H2) and q̂nxx = qxx +O(H2).

Now we solve the the Dirichlet problem (7)–(9) for q(x, t) using the implicit
scheme defined by

qnt + βq̂nx = γq̂nxx. (10)

We observe that the interface prediction scheme (10) for q(xi, tn) is the fully

implicit scheme, which is unconditionally stable. Subsequently, the values of
q(xi, tn) at the interfaces serve as the Neumann boundary conditions for each
sub-problem.

2.2. Interior solver step: Neumann problem

Suppose the entire domain is decomposed into P sub-domains. We can then
define P sub-problems with Neumann boundary conditions obtained in the pre-
diction step. Once the values of ux at the interfaces are predicted, we solve
the Neumann problem (1)–(3) for u(x, t) in each sub-domain. The approxi-
mated solutions wn

i for each of the P individual Neumann sub-problems can be
obtained using the fully implicit scheme

wn
t + βwn

x = γwn
xx
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with the fictitious points (4) and the values computed in the prediction step.
Throughout the interior solver steps, linear systems are generated and solved
using the non-iterative Crout factorization method [4].

2.3. Interface correction step

Finally, the approximated solutions wn
i at the interfaces are corrected using

the fully implicit scheme
wn

t + βwn
x = γwn

xx.

In this step, we do not solve any linear system; instead, we explicitly compute
and update the value of wn

i with the precomputed values of wn
i+1 and wn

i−1.
Subsequently, we repeat the interface prediction, interior solver, and the

interface correction steps until the last time level. This entire process is referred
to as the Prediction/Correction Domain Decomposition method (PCDD). We
summarize the algorithm as follows.

Algorithm 2.1. (PCDD algorithm)

Step 1 (Interface Prediction): Predict ux(xi, tn) at the interfaces us-
ing Eq. (10)

qnt + βq̂nx = γq̂nxx.

Step 2 (Interior): Solve interior linear systems to compute wn
i values

using Eq. (6)
wn

t + βwn
x = γwn

xx.

Step 3 (Interface Correction): Correct wn
i values at the interface us-

ing Eq. (6)
wn

t + βwn
x = γwn

xx.

Step 4: Repeat Step 1 through Step 3 until the last time level.

Note that wn
i+1 and wn

i−1 in Step 3 are computed values from Step 2. The
backward stencils for the three steps of the Prediction/Correction Domain De-
composition algorithm are illustrated in Figure 1.

qn−1
i

qni−LH qni qni+LH

t
t t t� �

H
� �

h
� �

h

wn−1
i

wn
i−1 wn
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i+1

t
t t t

wn−1
i

wn
i−1 wn

i wn
i+1

t
t t t

(a) Interface Prediction (b) Interior (c) Interface Correction

Figure 1. Stencils of the three steps of the PCDD method

We analyze the stability and truncation error of the new scheme. As evident
from the algorithm, sequential fully implicit schemes are applied, resulting in
the overall scheme being unconditionally stable.

Theorem 2.2. The interface prediction scheme of the PCDD method is uncon-
ditionally stable, and the truncation error is O(H2 + k).
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Proof. It is well-known [1, 3] that the fully implicit scheme for solving the one-
dimensional convection-diffusion equation with Neumann boundary conditions
(1)–(3) is unconditionally stable. The scheme (10) of the PCDD method during
the interface prediction of q(x, t) involves central differences for the x-axis over
the coarse mesh defined by the partition into sub-domains and backward dif-
ferences for the t-axis. Thus, the interface prediction scheme qnt + βq̂xn = γq̂nxx
is a fully implicit scheme and is unconditionally stable. Since qnt = qt + O(k),
q̂xn = qx + O(H2), and q̂nxx = qxx + O(H2), we can clearly observe that the
interface prediction scheme has errors |qni − q(xi, tn)| = O(H2 + k). □

With the same argument as presented in the proof above, we can immediately
derive the following theorem.

Theorem 2.3. The interior scheme and the correction scheme of the PCDD
method are unconditionally stable, and each truncation error is O(h2 + k).

Proof. Both the interior scheme and the interface correction scheme of the
PCDD method are wn

t + βwn
x = γwn

xx, which is an unconditionally stable fully
implicit scheme. Thus, we immediately see that the truncation errors of those
schemes are |wn

i −u(xi, tn)| = O(h2+k), since wn
t = wt+O(k), wn

x = wx+O(h2),
and wn

xx = wxx +O(h2). □

Note that each component of the PCDD scheme is unconditionally stable,
and hence the stability of the overall PCDD method is unconditional.

3. Numerical experiments and Efficiency

In this section, we present numerical results for the new scheme regarding
stability and efficiency. We compare the PCDD method with existing finite
difference methods. It is worth noting that the PCDD method with P = 1 is
equivalent to the fully implicit scheme (FIS), which is unconditionally stable
and notably non-domain decomposition.

Problem 3.1. Let us consider the following two model problems, MP1 and
MP2:

MP1: ut + ux = uxx, for (x, t) ∈ [0, 1]× [0, T ]
MP2: ut + 0.1ux = 0.02uxx, for (x, t) ∈ [0, 1]× [0, T ]

Note that the exact solutions are u(x, t) = exp(−t) sin(x − t) for MP1 and

u(x, t) = exp((5/2−
√
7/2)x−0.09t) for MP2, respectively. The initial conditions

and the Neumann boundary conditions are derived from the exact solutions.
The numerical experiments in this paper were carried out on a desktop computer
with Intel(R) Core(TM) i7-8700 CPU with 8.0GB RAM.

Firstly, we test the stability of the PCDD method using the two model prob-
lems. Table 1 shows the maximum error ||uN − wN ||∞ between the exact so-
lutions and the numerical solutions for MP1 and MP2 at t = 1 with various λ
defined by λ = γ ∆t

(∆x)2 ranging from 80 to 40000 for the three methods: FES,
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FIS, and PCDD with 10 sub-domains. As observed in Table 1, FES is not
convergent for those λ, whereas FIS and PCDD(10) are both unconditionally
stable. Furthermore, the accuracy of PCDD(10) is highly comparable to FIS,
which serves as a benchmark for this research.

Table 1. Maximum errors for various λ values in the model problems

∆x ∆t λ FES FIS PCDD(10)
1/2000 1/100 40000 ∞ 0.590e-2 0.596e-2

MP1 1/2000 1/400 10000 ∞ 0.147e-2 0.162e-2
1/2000 1/1000 4000 ∞ 0.590e-3 0.738e-3
1/2000 1/100 800 ∞ 0.107e-3 0.181e-3

MP2 1/2000 1/400 200 ∞ 0.269e-4 0.896e-4
1/2000 1/1000 80 ∞ 0.107e-4 0.570e-4

Figure 2 depicts the exact solution curves and the numerical solution curves
of PCDD(10) at t = 1 with ∆x = 1/2000 and ∆t = 1/100 for MP1, and
∆x = 1/2000 and ∆t = 1/1000 for MP2, respectively. It is evident from Figure
2 that PCDD(10) is a highly accurate method when ∆t is small.
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Figure 2. Numerical solution curves for MP1 and MP2

Secondly, we investigate the efficiency of the PCDD method for the Neumann
problem. A common measurement of the efficiency of a parallel algorithm is
the parallel execution time (PET). Since the algorithm is simulated with one
processor in this numerical experiments, the true PET using P processors is
roughly equivalent to the total CPU time (TCPU) divided by P .

Table 2 presents the maximum errors at t = 1, total CPU time (TCPU),
and parallel execution time (PET) of the PCDD method for various numbers
of sub-domains P for MP1 and MP2, respectively. For MP1, we provide the
numerical results for the discretization ∆x = 1/2000, ∆t = 1/100. And for
MP2, ∆x = 1/2000, ∆t = 1/1000 were used. As observed in Table 2, the
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various PCDD(P ) methods are as accurate as FIS, and their parallel execution
time is much less than the CPU time of FIS.

Table 2. Maximum errors and Speedups for various P of the PCDD(P )
(TCPU=Total CPU time, PET=Parallel Execution Time)

P 1(=FIS) 10 20 50 100 200
Error 5.90e-3 5.96e-3 5.86e-3 5.89e-3 5.89e-3 5.90e-3

MP1 TCPU 0.0156 0.0313 0.0469 0.0938 0.2031 0.3750
PET 0.0156 0.0031 0.0023 0.0019 0.0020 0.0019
Error 1.07e-5 5.70e-5 2.49e-5 1.36e-5 1.15e-5 1.10e-5

MP2 TCPU 0.1094 0.2813 0.4688 1.0313 1.9375 3.7813
PET 0.1094 0.0281 0.0234 0.0206 0.0194 0.0189

Figure 3 illustrates the absolute error distributions of the various PCDD(P )
methods compared with the errors of the FIS method in the experiments shown
in Table 2. It can be seen in Figure 3 that the error distribution of PCDD(P )
approaches the distribution of FIS when P is large.
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Figure 3. Error distributions of PCDD(P ) with various P

Problem 3.2. Let us consider the following model problem, MP3, which has a
very small diffusion coefficient γ = 10−6:

MP3: ut + ux = 10−6uxx, for (x, t) ∈ [0, 1]× [0, T ]

Note that the exact solution is u(x, t) = exp(−10−6t) sin(x − t). The initial
condition and the Neumann boundary conditions are derived from the exact
solutions.

Table 3 presents the maximum error ||uN−wN ||∞ between the exact solutions
and the numerical solutions for MP3 at t = 1 with various λ values and various
methods: FES, FIS, PCDD(10), PCDD(20, and PCDD(50). It is evident from
Table 3 that the accuracy of PCDD(P ) aligns with the observatoins in Table 1
and Table 2.
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Table 3. Maximum errors for various λ values and various P of MP3

∆x ∆t λ FES FIS PCDD(10) PCDD(20) PCDD(50)
1/200 1/2000 2e-5 1.166e-4 1.174e-4 1.173e-4 1.174e-4 1.174e-4
1/200 1/4000 1e-5 5.748e-5 6.266e-5 6.265e-5 6.266e-5 6.267e-5
1/200 1/8000 5e-6 2.871e-5 3.531e-5 3.530e-5 3.530e-5 3.531e-5

Figure 4 illustrates the exact solution curves and the numerical solution
curves of PCDD(10) at t = 1 with ∆x = 1/200 and ∆t = 1/2000 for MP3,
along with the absolute error distributions of the various PCDD(P ) methods
compared with the errors of the FIS method in the experiments shown in Table
3. It can be seen in Figure 4 that the error distribution of PCDD(P ) approaches
the distribution of FIS when ∆t is small.
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Figure 4. Numerical solution curve and Error distributions for MP3

4. Conclusion

In this paper, we introduced a numerical method based on domain decom-
position to find the numerical solutions of one-dimensional convection-diffusion
equations with Neumann boundary conditions. The prediction scheme of the
new method is of order O(H2+k). The interior scheme and the interface correc-
tion scheme are of order O(h2 + k). The PCDD(P ) scheme is unconditionally
stable and as accurate as the fully implicit scheme. Furthermore, the paral-
lel execution time of the new scheme is much less than the CPU time of the
fully implicit scheme. It is hoped that the PCDD method for one-dimensional
convection-diffusion equations with Neumann boundary conditions can be eas-
ily applied to higher-dimensional Neumann convection-diffusion problems. Fi-
nally, we plan to study more complex problems in the future, such as nonlinear
convection-diffusion equations.
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