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ESTIMATES FOR EIGENVALUES OF NEUMANN AND

NAVIER PROBLEM

Yanlin Deng, Feng Du, and Lanbao Hou

Abstract. In this paper, we firstly prove some general inequalities for

the Neumann eigenvalues for domains contained in a Euclidean n-space
Rn. Using the general inequalities, we can derive some new Neumann

eigenvalues estimates which include an upper bound for the (k + 1)th

eigenvalue and a new estimate for the gap of the consecutive eigenvalues.

Moreover, we give sharp lower bound for the first eigenvalue of two kinds

of eigenvalue problems of the biharmonic operator with Navier boundary
condition on compact Riemannian manifolds with boundary and positive

Ricci curvature.

1. Introduction

Let Ω be a bounded domain with boundary ∂Ω in an n-dimensional Eu-
clidean space Rn, and let ∆ be the Laplace operator on Rn. We can consider
the following Dirichlet problem{

∆u = −λu in Ω,

u = 0 on ∂Ω.
(1.1)

It is well known that this eigenvalue problem has a discrete spectrum,

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · ,

where each eigenvalue is repeated with its multiplicity. When Ω is a bounded
domain in a 2-dimensional Euclidean space R2, Payne-Pólya-Weinberger [7] in
1956 gave an upper bound of the gap of consecutive eigenvalues of the problem
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(1.1) that

λk+1 − λk ≤
4

kn

k∑
i=1

λi.(1.2)

In 1969, Thompson [9] extended (1.2) to n-dimensional case and obtained

λk+1 − λk ≤
4

kn

k∑
i=1

λi.(1.3)

In 1980, Hile-Protter [4] strengthened (1.3), and proved

kn

4
≤

k∑
i=1

λi
λk+1 − λi

.(1.4)

In 1991, Yang [11] gave the following much stronger inequality

k∑
i=1

(λk+1 − λi)2 ≤ 4

n

k∑
i=1

(λk+1 − λi)λi.(1.5)

From (1.5), we can get a weaker but explicit form

λk+1 ≤
(

1 +
4

n

)
1

k

(
k∑
i=1

λi

)
.(1.6)

These inequalities (1.2)-(1.6) are called universal inequalities because they do
not involve domain dependence.

Let Ω be a bounded domain with boundary ∂Ω in an n-dimensional Eu-
clidean space Rn, we consider the following Neumann problem{

∆u = −µu, in Ω,
∂u
∂ν = 0, on ∂Ω,

(1.7)

where ν is the outward unit normal vector field of the boundary ∂Ω. The
Neumann problem (1.7) also has a discrete spectrum:

0 = µ1 < µ2 ≤ · · · ≤ µk ≤ · · · ,

where each eigenvalue is repeated with its multiplicity.
For the Neumann eigenvalues, some mathematicians want to derive similar

results with (1.2). In [3], Harrell-Michel gave a estimate for the gap of the
consecutive eigenvalues of (1.7)

(1.8) µn+1 − µn ≤ (n+ 1)

(
A

n

n∑
l=1

µl +B

)
,

where A and B depend only on the inradius r and Ω.
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Inspired by the work of Harrell-Michel [3] and Chung-Grigor’ya-Yau [2],
Levitin-Parnovski [6] gave a new bound for the gap of the consecutive eigen-
values of (1.7) as following

(1.9) µk+1 − µk ≤
C3|Ω|∑q
p=1 r

−2+n
p

(
r−2
q

k∑
i=1

µi +

q∑
p=1

r−4
p

)
,

where |Ω| is the volume of Ω, C3 is a constant depending only on n, and {rj}qj=1

are radii of q balls Bp = B(xp, rp) inside Ω such that r1 ≥ r2 ≥ · · · ≥ rq and
these balls do not intersect each other. Assuming that all the radii {rj}qj=1 are
the same, they got

(1.10) µk+1 − µk ≤ C4|Ω|r−nq

(
1

q

k∑
i=1

µi + r−2
q

)
,

where C4 is also a constant depending only on n.
In this paper, we will give some new estimates for the eigenvalues of the

Neumann problem (1.7).

Theorem 1.1. Let Ω be a bounded domain in an n-dimensional Euclidean
space Rn with piecewise smooth boundary ∂Ω, and let µi be the ith eigenvalue
of the Neumann problem (1.7). Then we have(

k∑
i=1

f(µi)

)2

≤ |Ω|2

ξ2
(∑q

p=1 r
−2+n
p

)2

(
k∑
i=1

g(µi)r
−2
q

)

×

(
k∑
i=1

f2(µi)

g(µi)(µk+1 − µi)

(
8r−2
q µi +

q∑
p=1

2ξ2r−4
p

))
,(1.11)

where (f, g) is a family of couples of functions which is defined in Definition 1,
and ξ is a constant. Especially, if f ≡ g, we have

(1.12)

k∑
i=1

f(µi) ≤
2|Ω|

ξ
∑q
p=1 r

−2+n
p

k∑
i=1

f(µi)

(µk+1 − µi)

(
4r−2
q µi +

q∑
p=1

ξ2r−4
p

)
.

By choosing different (f(µi), g(µi)), we can get different eigenvalue inequal-

ities. For example, if f(µi) = (µk+1 − µi)2
in (1.12), we can get:

Corollary 1.2. Under the same assumption in Theorem 1.1, we have

(1.13)
k∑
i=1

(µk+1 − µi)2 ≤ 2|Ω|
ξ
∑q
p=1 r

−2+n
p

k∑
i=1

(µk+1 − µi)

(
4r−2
q µi +

q∑
p=1

ξ2r−4
p

)
.
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Remark 1.3. i) Let A = 4|Ω|
ξr2q

∑q
p=1 r

−2+n
p

, B =
ξ2r2q

∑q
p=1 r

−4
p

4 , and let ηi = µi +B,

we infer from (1.13) that

(1.14)

k∑
i=1

(ηk+1 − ηi)2 ≤ 2A

k∑
i=1

(ηk+1 − ηi) ηi,

solving quadratic inequality of ηk+1, we have

(1.15) ηk+1 ≤
A+ 1

k

k∑
i=1

ηi −

√√√√(A+ 1

k

k∑
i=1

ηi

)2

− 1 + 2A

k

k∑
i=1

η2
i .

ii) Taking f(µi) = g(µi) = (µk+1 − µi), we have

(1.16)

k∑
i=1

(µk+1 − µi) ≤
2|Ω|

ξ
∑q
p=1 r

−2+n
p

k∑
i=1

(
4r−2
q µi +

q∑
p=1

ξ2r−4
p

)
.

Since
∑k
i=1(µk+1 − µk) ≤

∑k
i=1(µk+1 − µi), then we get

(1.17) µk+1 − µk ≤
2|Ω|

kξ
∑q
p=1 r

−2+n
p

k∑
i=1

(
4r−2
q µi +

q∑
p=1

ξ2r−4
p

)
.

iii) The inequalities (1.13)-(1.17) are not the universal inequalities because
they are not domain independent.

In the second part of this section, we will study the eigenvalue problem
of biharmonic operator with Navier boundary condition. Let M be an n-
dimensional compact connected Riemannian manifold with smooth boundary
∂M , we consider the following equation{

∆2u− τ∆u = Λu, in M,

u = (1− σ)∂
2u
∂2ν + σ∆u = 0, on ∂M,

(1.18)

where τ is a non-negative constant related to the lateral tension of the plate,
and σ is also a constant and which is between − 1

n−1 and 1. Problem (1.18) is
called the Navier problem of biharmonic operator and has a discrete spectrum:

0 = Λ1 < Λ2 ≤ · · · ≤ Λk ≤ · · · ,

where each eigenvalue is repeated with its multiplicity. For the first nonzero
eigenvalue of Problem (1.18), we can get:

Theorem 1.4. Let M be an n(≥ 2)-dimensional compact connected Riemann-
ian manifold Mn with smooth boundary ∂M and let τ ≥ 0, − 1

n−1 < σ < 1.

Assume that the Ricci curvature of M is bounded below by (n− 1) and that the
mean curvature of ∂M is non-negative. Let Λ1 be the first nonzero eigenvalue
of the Navier problem (1.18). Then we have

Λ1 ≥ (n+ τ)λ1,(1.19)
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where λ1 is the first Dirichlet eigenvalue. The equality holds if and only if M
is isometric to an n-dimensional Euclidean unit semi-sphere.

At the end of this section, we will give estimates for the first nonzero eigen-
value of buckling problem with Navier boundary condition.

Theorem 1.5. Let M be an n(≥ 2)-dimensional compact connected Riemann-
ian manifold Mn with smooth boundary ∂M . Assume that the Ricci curvature
of M is bounded below by (n− 1) and that the mean curvature of ∂M is non-
negative. Let Γ1 be the first nonzero eigenvalue of the problem{

∆2u = Γ∆u, in M,

u = (1− σ)∂
2u
∂2ν + σ∆u = 0, on ∂M,

(1.20)

where − 1
n−1 < σ < 1. Then we have

Γ1 ≥ n,(1.21)

the equality holds if and only if M is isometric to an n-dimensional Euclidean
unit semi-sphere.

Remark 1.6. When τ = 0, σ = 0, Theorem 1.4 can cover the result of [1,
Theorem 1.7], when σ = 0, Theorem 1.5 can cover the result of [1, Theorem
1.8].

2. Preliminaries

In this section, we will give some results which play a key role in the proof
of the main results which are listed in Section 1. Firstly, we shall introduce a
family of couples of functions, more details can be seen in [5].

Definition 1. Let λ > 0, a couple (f, g) of functions defined on ]0, λ[ belongs
to =λ as that

(i) f and g are positive,
(ii) f and g satisfy the following condition, for any x, y ∈]0, λ[, such that

x 6= y,(
f(x)− f(y)

x− y

)2

+

(
(f(x))2

g(x)(λ− x)
+

(f(y))2

g(y)(λ− y)

)(
g(x)− g(y)

x− y

)
≤ 0.

Remark 2.1. We know from the definition that g(x) is a nonincreasing function,
and there are many couples (f, g) ∈ =λk+1

, e.g.
(i) {1, (λk+1 − x)α |α ≥ 0} ∈ =λk+1

;

(ii) {(λk+1 − x), (λk+1 − x)β |β ≥ 1
2} ∈ =λk+1

;
(iii) {(λk+1 − x)γ , (λk+1 − x)γ | 0 ≤ γ ≤ 2} ∈ =λk+1

;

(iv) {(λk+1 − x)α, (λk+1 − x)β |α < 0, β ≥ 1, α2 ≤ β} ∈ =λk+1
.

In [5], Ilias-Makhoul gave following general inequality.
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Lemma 2.2. Let A : D ⊂ H → H be a self-adjoint operator defined on a
dense domain D, which is semibounded below and has a discrete spectrum λ1 ≤
λ2 ≤ · · · . Let {Qp : A(D) → H}np=1 be a collection of symmetric operators,
leaving D invariant. We denote by {ui}∞i=1 a basis of orthonormal eigenvectors
of A, ui corresponding to λi. If for k ≥ 1 we have λk+1 > λk, then for any
(f, g) ∈ =λk+1

,(
k∑
i=1

n∑
p=1

f(λi)〈[A,Qp]ui, Qpui〉

)2

(2.1)

≤
(

k∑
i=1

n∑
p=1

g(λi)〈[A,Qp]ui, Qpui〉

)(
k∑
i=1

n∑
p=1

f2(λi)

g(λi)(λk+1 − λi)
‖[A,Qp]ui‖2

)
.

At last, we will introduce the Bochner formula and the Reilly formula of
the Laplacian. For a smooth function u defined on a Riemannian manifold
(M, 〈, 〉), we can give the following the Bochner-type formula:

(2.2)
1

2
∆
(
|∇u|2

)
= |∇2u|2 + Ric(∇u,∇u) + 〈∇u,∇(∆u)〉,

where ∇2u is the Hessian of u. Let ν be the unit outward normal vector of
∂M . The shape operator of ∂M is given by S(X) = ∇Xν and the second
fundamental form of ∂M is defined as II(X,Y ) = 〈S(X), Y 〉, here X,Y ∈
T∂M . The eigenvalues of S are called the principal curvatures of ∂M and the
mean curvature H of ∂M is given by H = 1

n−1 trS, here trS denotes the trace

of S. We can now state Reilly formula [8]. For a smooth function u defined on
M , the following identity holds if h = ∂u

∂ν |∂M , z = u|∂M :∫
M

(
(∆u)2 − |∇2u|2 − Ric(∇u,∇u)

)
=

∫
∂M

(
(n− 1)Hh+ ∆z

)
h+

∫
∂M

(
II(∇z,∇z)− 〈∇z,∇∂z

∂ν
〉
)
,(2.3)

here ∆ and ∇ represent the Laplacian and the gradient on ∂M with respect to
the induced metric on ∂M , respectively.

3. Proof of the main results

In this section, we will give the proof of the main results which list in Section
1.

Proof of Theorem 1.1. Using the method given by Levitin-Parnovski in [6], we
insert q balls {Bp = B(xp, rp) : p = 1, . . . , q} of radii r1 ≥ r2 ≥ · · · ≥ rq
inside Ω such that these balls do not intersect each other. Let R(x) be the
first nonconstant radial eigenfunction of the Neumann Laplacian in a unit ball
B(0, 1) normalized in such a way that it is equal to 1 on the boundary of the
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ball, and let ξ be the corresponding eigenvalue of R(x). Then the function

G(x) :=

{
R(r−1

p (x− xp)), xp ∈ Bp,
1, otherwise,

(3.1)

satisfies Neumann condition on ∂Ω, i.e., ∂g
∂ν

∣∣∣
∂Ω

= 0.

Taking A = −∆, Qp = G in (2.1) and summing over p from 1 to q, we have(
k∑
i=1

n∑
p=1

f(µi)〈[−∆, Rp]ui, Rpui〉

)2

(3.2)

≤
(

k∑
i=1

n∑
p=1

g(µi)〈[−∆, Rp]ui, Rpui〉

)(
k∑
i=1

n∑
p=1

f2(µi)

g(µi)(µk+1 − µi)
‖[−∆, Rp]ui‖2

)
.

By direct computations, we have

〈[−∆, Rp]ui, Bpui〉 =

∫
Bp

|∇Rp|2u2
i ,(3.3)

and

‖[−∆, Rp]ui‖2 =

∫
Bp

|2〈∇Rp,∇ui〉+ ui∆Rp|2 .(3.4)

Since ξ is the eigenvalue corresponding to Rp, and by R2
p ≤ 1 and |∇Rp|2 ≤

1
q r
−2
q , we have

k∑
i=1

q∑
p=1

f2(µi)

g(µi)(µk+1 − µi)

∫
Bp

|2〈∇Rp,∇ui〉+ ui∆Rp|2

=

k∑
i=1

q∑
p=1

f2(µi)

g(µi)(µk+1 − µi)

∫
Bp

∣∣2〈∇Rp,∇ui〉+ r−2
p ξuiRp

∣∣2
≤

k∑
i=1

q∑
p=1

f2(µi)

g(µi)(µk+1 − µi)

∫
Bp

(
8|∇Rp|2|∇ui|2 + 2r−4

p ξ2u2
iR

2
p

)
≤

k∑
i=1

f2(µi)

g(µi)(µk+1 − µi)

(
8r−2
q µi +

q∑
p=1

2ξ2r−4
p

)
,(3.5)

and
k∑
i=1

q∑
p=1

g(µi)

∫
Bp

|∇Rp|2u2
i ≤

k∑
i=1

g(µi)r
−2
q .(3.6)

On the other hand, since u1 ≡ 1√
|Ω|

, we have

k∑
i=1

q∑
p=1

f(µi)

∫
Bp

|∇Rp|2u2
i ≥

k∑
i=1

q∑
p=1

f(µi)|Ω|−1

∫
Bp

|∇Rp|2
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=

k∑
i=1

f(µi)|Ω|−1ξr−2
p

q∑
p=1

∫
Bp

R2
p

=

k∑
i=1

f(µi)|Ω|−1ξ

q∑
p=1

r−2+n
p .(3.7)

Substituting (3.3)-(3.7) into (3.2), we have(
k∑
i=1

f(µi)

)2

≤ |Ω|2

ξ2
(∑q

p=1 r
−2+n
p

)2

(
k∑
i=1

g(µi)r
−2
q

)

×

(
k∑
i=1

f2(µi)

g(µi)(µk+1 − µi)

(
8r−2
q µi +

q∑
p=1

2ξ2r−4
p

))
.

If f ≡ g, we infer from (3.2) that

(3.8)

k∑
i=1

n∑
p=1

f(µi)〈[−∆, Rp]ui, Rpui〉 ≤
k∑
i=1

n∑
p=1

f(µi)

(µk+1 − µi)
‖[−∆, Rp]ui‖2,

then

k∑
i=1

f(µi) ≤
2|Ω|

ξ
∑q
p=1 r

−2+n
p

k∑
i=1

f(µi)

(µk+1 − µi)

(
4r−2
q µi +

q∑
p=1

ξ2r−4
p

)
.

This completes the proof of Theorem 1.1. �

In what follows, we give the proofs of Theorems 1.4 and 1.5, some ideas
come from the paper of Chen-Cheng-Wang-Xia in [1, 10].

Proof of Theorem 1.4. Let f be the eigenfunction corresponding to the first
eigenvalue Λ1 of the problem (1.18), which means{

∆2f − τ∆f = Λ1f, in Ω,

f = (1− σ)∂
2f
∂2ν + σ∆f = 0, on ∂Ω.

(3.9)

Then, it follows from the divergence theorem that

(3.10) Λ1

∫
M

f2 =

∫
M

f
(
∆2f − τ∆f

)
=

∫
M

(∆f)
2

+ τ

∫
M

|∇f |2−
∫
∂M

h∆f,

where h = ∂f
∂ν

∣∣∣
∂M

. Since

∆f
∣∣∣
∂M

= ∆z + (n− 1)Hh+
∂2f

∂2ν

∣∣∣
∂M

,
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where z = f
∣∣
∂M

, ∆ is the Laplacian on ∂M . It follows from the boundary

condition f
∣∣
∂M

= (1− σ)∂
2f
∂2ν

∣∣∣
∂M

+ σ∆f
∣∣∣
∂M

= 0 that

(3.11) ∆f
∣∣∣
∂M

= (1− σ)(n− 1)Hh.

Substituting (3.11) into (3.10), we have

(3.12) Λ1 =

∫
M

(∆f)
2

+ τ
∫
M
|∇f |2 −

∫
∂M

(1− σ)(n− 1)Hh2∫
M
f2

.

Taking f into the Reilly formula [8], we have∫
M

(
(∆f)2 − |∇2f |2

)
=

∫
M

Ric(∇f,∇f) + (n− 1)

∫
∂M

Hh2

≥ (n− 1)

∫
M

|∇f |2 + (n− 1)

∫
∂M

Hh2.

Substituting |∇2f |2 ≥ 1
n (∆f)2 into above inequality, we have

(3.13)

∫
M

(∆f)
2 ≥ n

∫
M

|∇f |2 + n

∫
∂M

Hh2.

Combining (3.12) and (3.13), we have

Λ1 ≥
(n+ τ)

∫
M
|∇f |2 + (n− (1− σ)(n− 1))

∫
∂M

Hh2∫
M
f2

.

Since H > 0,− 1
n−1 < σ < 1, the above inequality implies that

Λ1 ≥
(n+ τ)

∫
M
|∇f |2∫

M
f2

.

From the Poincaré inequality λ1 ≤
∫
M
|∇f |2∫

M
f2 , where λ1 is the first eigenvalue of

the Dirichlet Laplacian. Then we have

(3.14) Λ1 ≥ (n+ τ)λ1.

If the equality holds in (3.14), that is Λ1 = (n + τ)λ1. Then the Poincaré

inequality λ1 ≤
∫
M
|∇f |2∫

M
f2 becomes the equality λ1 =

∫
M
|∇f |2∫

M
f2 , which means that

f is a first eigenfunction corresponding to the first Dirichlet eigenvalue λ1 of
M , then we have ∆f = −λ1f . It follows from (3.9) that

(3.15) Λ1f
2 = f

(
∆2f − τ∆f

)
= λ2

1f
2 + τλ1f

2.

Then we can get λ1 = n. By similar discussion in the proof of [1, Theorem 1.7],
we infer from the Reilly’s theorem that M is isometric to an n-dimensional unit
semi-sphere. Let Sn+(1) be an n-dimensional unit semi-sphere given by

Sn+(1) =

{
(x1, . . . , xn+1) ∈ Rn+1

∣∣∣ n+1∑
i=1

x2
i = 1, xn+1 ≥ 0

}
.
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It is easy to check that the function xn+1 on Sn+(1) is an eigenfunction of the
problem (1.18) corresponding to the eigenvalue n2 + nτ and the first Dirichlet
eigenvalue λ1 of Sn+(1). Then we can conclude that the first eigenvalue of
problem (1.18) of Sn+(1) is (n + τ)λ1. This completes the proof of Theorem
1.4. �

Proof of Theorem 1.5. Let g be the eigenfunction corresponding to the first
eigenvalue Γ1 of the problem (1.20), which means{

∆2g = Γ1∆g, in Ω,

g = (1− σ) ∂
2g
∂2ν + σ∆g = 0, on ∂Ω.

Then, it follows from the divergence theorem that

(3.16) Γ1

∫
M

|∇g|2 =

∫
M

(∆g)
2 −

∫
∂M

s∆g,

where s = ∂g
∂ν

∣∣∣
∂M

. Similar discussion as in the proof of Theorem 1.4, we have

(3.17) Γ1 =

∫
M

(∆g)
2 −

∫
∂M

(1− σ)(n− 1)Hs2∫
M
|∇g|2

.

Taking g into the Reilly formula and noticing |∇2g|2 ≥ 1
n (∆g)2, we have

(3.18)

∫
M

(∆g)
2 ≥ n

∫
M

|∇g|2 + n

∫
∂M

Hs2.

Combining (3.17) and (3.18), we have

Γ1 ≥
n
∫
M
|∇g|2 + (n− (1− σ)(n− 1))

∫
∂M

Hs2∫
M
|∇g|2

.

Since H > 0,− 1
n−1 < σ < 1, the above inequality implies that

Γ1 ≥ n.
If the equality holds, by similar discussion in the proof of [1, Theorem 1.8] and
in the proof Theorem 1.4, we know that M is isometric to an n-dimensional
unit semi-sphere. This completes the proof of Theorem 1.5. �
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